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I. Advances in the Acquisition of Secure 
Systems Based on Open Architectures   

Walt Scacchi and Thomas A. Alspaugh  
Institute for Software Research  
University of California, Irvine  
Irvine, CA 92697-3455 USA  

wscacchi@ics.uci.edu, thomas.alspaugh@acm.org  

Abstract  

The role of software acquisition ecosystems in the development and evolution 

of secure open architecture systems has received insufficient consideration. Such 

systems are composed of software components subject to different security 

requirements in an architecture in which evolution can occur by evolving existing 

components or by replacing them. However, this may result in possible security 

requirements conflicts and organizational liability for failure to fulfill security 

obligations. We have developed an approach for understanding and modeling 

software security requirements as “security licenses,” for analyzing conflicts among 

groups of such licenses in realistic system contexts, and for guiding the acquisition, 

integration, or development of systems with open source components in such an 

environment. Consequently, this paper reports on our efforts to extend our existing 

approach to specifying and analyzing software intellectual property licenses to now 

address software security licenses that can be associated with secure OA systems.  
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A. Introduction  

A substantial number of development organizations are adopting a strategy in 

which a software-intensive system is developed with an open architecture (OA; 

Oreizy, 2000), whose components may be open source software (OSS) or 

proprietary with open application programming interfaces (APIs). Such systems 

evolve not only through the evolution of their individual components, but also 

through replacement of one component by another, possibly from a different 

producer or under a different license. With this approach to software system 

acquisition, the system development organization becomes an integrator of 

components largely produced elsewhere that are interconnected through open APIs 

as necessary to achieve the desired result. 

An OA development process arises in a software acquisition ecosystem in 

which the integrator is influenced from one direction by the goals, interfaces, license 

choices, and release cycles of the component producers, and in another direction by 

the needs of its consumers. As a result, the software components are reused more 

widely, and the resulting OA systems can achieve reuse benefits such as reduced 
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costs, increased reliability, and potentially increased agility in evolving to meet 

changing needs.  

An emerging challenge is to realize the benefits of this approach when the 

individual components are subject to different security requirements. This may arise 

due either to how a component’s external interfaces are specified and defended, or 

to how system components are interconnected and configured in ways that can or 

cannot defend the composed system from security vulnerabilities and external 

exploits. Ideally, any software element in a system composed from components from 

different producers can have its security capabilities specified, analyzed, and 

implemented at system architectural design-time, build-time, or at deployment run-

time. Such capability-based security in its simplest form specifies what types, value 

ranges, and values of data, or control signals (e.g., program invocations, procedure 

or method calls), can be input, output, or handed off to a software plug-in or external 

(helper) application from a software component or composed system.  

When designing a secure OA system, decisions and trade-offs must be made 

as to what level of security is required, as well as to what kinds of threats to security 

must be addressed. The universe of possible security threats is continually emerging 

and the cost/effort of defending against them is ongoing. Similarly, anticipating all 

possible security vulnerabilities or threats is impractical (or impossible). Further, 

though it may be desirable that all systems be secure, different systems need 

different levels of security, which may come at ever greater cost or inconvenience in 

order to accommodate. Strategic systems may need the greatest security possible, 

whereas other systems may require much less rigorous security mechanisms. Thus, 

finding an affordable, scalable, and testable means for specifying the security 

requirements of software components, or OA systems composed with components 

with different security requirements, is the goal of our research.  

The most basic form of security requirements that can be asserted and tested 

are those associated with virtual machines. Virtual machines (VM) abstract away the 
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actual functional or processing capabilities of the computational systems on which 

they operate, and instead provide a limited functionality computing surround (or 

“sandbox”). VM can isolate a given component or system, other software 

applications, utilities, repositories, or external/remote control data access (input or 

output). The capabilities for a VM (e.g., an explicit, pre-defined list of approved 

operating system commands or programs that can write data or access a repository) 

can be specified as testable conditions that can be assigned to users or programs 

authorized to operate within the VM. The VM technique is now widely employed 

through software “hypervisors” (e.g., IBM VM/370, VMware, VirtualBox, Parallels 

Desktop for Mac) that isolate software applications and operating systems from the 

underlying system platform or hardware. Such VM act like “containment vessels” 

through which it is possible to specify barriers to entry (and exit) of data and control 

via security capabilities that restrict other programs. Thus, these capabilities specify 

what rights or obligations may be, or may not be, available for access or update to 

data or control information. Thus, architectural design-time decisions pertaining to 

specifying the security rights or obligations for the overall system or its components 

are done by specification of VM that contain the composed system or its 

components. These rights or obligations can be specified as pre-conditions on input 

data or control signals, or post-conditions on output data or control signals.  

The problem of specifying the build-time and run-time security requirements 

of OA systems is different from that at design-time. In determining how to specify the 

software build sequence, security requirements are manifest as capabilities that may 

be specific to explicitly declared versions of designated programs. For example, if an 

OA system at design-time specifies a “Web browser” as one of its components, at 

build-time a particular Web browser (Mozilla Firefox or Internet Explorer) must then 

be specified, as must its baseline version (e.g., Firefox 4.0 or Internet Explorer 9.0). 

However, if the resulting run-time version of the OA system must instead employ a 

locally available Web browser (e.g., Firefox 3.6.1 or Internet Explorer 8.0 Service 

Pack 2), then the OA system integrators may either need to produce multiple run-

time versions for deployment, or else build the OA system using (a) an earlier 
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version of the necessary component (e.g., Firefox 3.5 or Internet Explorer 7.0) that is 

“upward compatible” with newer browser versions, (b) a stub or abstract program 

interface that allows for a later designated compatible component version to be 

installed/used at run-time, or else (c) create different run-time version alternatives 

(i.e., variants) of the target OA systems that may or may not be “backward 

compatible” with the legacy system component versions available in the deployment 

run-time environment. The need to specify build-time and run-time components by 

hierarchical version numbers like Firefox 3.6.16.144 (and possibly timestamps of 

their creation or local installation) arises because evolutionary version updates often 

include security patches that close known vulnerabilities or prevent known exploits. 

As indicated in Section 2, Related Work, security attacks often rely on system entry 

through known vulnerabilities that are present in earlier versions of software 

components that have not been updated to newer versions that don’t have the same 

vulnerabilities.  

Because we have been able to address an analogous problem of how to 

specify and analyze the intellectual property rights and obligations of the licenses of 

software components, our efforts now focus on the challenge of how to specify and 

analyze software components and composed system security rights and obligations 

using a new information structure we call a “security license.” The actual form of 

such a security license is still to be finalized, but at this point, we believe it is 

appropriate to begin to develop candidate forms or types of security licenses for 

further research and development, especially for security license forms that can be 

easily formalized, readily applied to large-scale OA systems, and be automatically 

analyzed or tested in ways that we have already established (Alspaugh, Asuncion, & 

Scacchi, 2010; Alspaugh, Scacchi, & Asuncion, 2010). This is another goal of our 

research here.  

Next, the challenge of specifying secure software systems composed from 

secure or insecure components is inevitably entwined with the software ecosystems 

that arise for secure OA systems. We found that an OA software acquisition 
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ecosystem involves organizations and individuals producing and consuming 

components, and supply paths from producer to consumer; but also  

 the OA of the system(s) in question, and how best to secure it,  

 the open interfaces provided by the components, and how to specify 
their security requirements, 

 the degree of coupling in the evolution of related components that can 
be assessed in terms of how security rights and obligations may 
change, and  

 the rights and obligations resulting from the security licenses under 
which various components are released that propagate from producers 
to consumers.  

An example of a software acquisition ecosystem producing and integrating 

secure software components or secure systems is portrayed in Figure 1.  

 

 

 

 

 

 

 

 

 

Figure 1. An Example of a Software Acquisition Ecosystem in Which  
Secure OA Systems May Be Developed  
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In order to most effectively use an OA approach in developing and evolving a 

system, it is essential to consider this OA ecosystem. An OA system draws on 

components from proprietary vendors and open source projects. Its architecture is 

made possible by the existing general ecosystem of producers, from which the initial 

components are chosen. The choice of a specific OA begins a specialized software 

ecosystem involving components that meet (or can be shimmed to meet) the open 

interfaces used in the architecture. We do not claim that this is the best or the only 

way to reuse components or to produce secure OA systems, but it is an ever more 

widespread way. In this paper we built on previous work on heterogeneously 

licensed systems (Alspaugh, Asuncion, et al., 2009a; German & Hassan, 2009; 

Scacchi & Alspaugh, 2008) by examining how OA development affects and is 

affected by software ecosystems and the role of security licenses for components 

included within OA software ecosystems.  

In the remainder of this paper, we survey some related work (Section 2), 

define and examine characteristics of open architectures with or without secure 

software elements (Section 3), define and examine characteristics for how secure 

OA systems evolve (Section 4), introduce a structure for security licenses (Section 

5), outline security license architectures (Section 6), and sketch our approach for 

security license analysis (Section 7). We then close with a discussion addressing 

how our software license and analysis scheme relates to software product lines 

(Section 8) before stating our conclusions (Section 9).  

B. Related Work  

Software systems, whether operating as standalone components or as 

elements within large system compositions, are continuously being subjected to 

security attacks. These attacks seek to slip through software vulnerabilities known to 

the attackers but perhaps not to the system integrators or consumers. These attacks 

often seek to access, manipulate, or remotely affect the data values or control 

signals that a component or composed system processes for nefarious purposes or 

seek to congest or over-saturate networked services. Recent high profile security 
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attacks like Stuxnet (Falliere, Murchu, & Chien, 2011) reveal that security attacks 

may be very well planned and employ a bundle of attack vectors and social 

engineering tactics in order for the attack to reach strategic systems that are mostly 

isolated and walled off from public computer networks. The Stuxnet attack entered 

through software system interfaces at either the component, application subsystem, 

or base operating system level (e.g., via removable thumb drive storage devices), 

and their goal was to go outside or beneath their entry context. However, all of the 

Stuxnet attacks on the targeted software system could be blocked or prevented 

through security capabilities associated with the open software interfaces that would 

(a) limit access or evolutionary update rights lacking proper authorization, as well as 

through (b) “sandboxing” (i.e., isolating) and holding up any evolutionary updates 

(the attacks) prior to their installation and run-time deployment. Furthermore, 

because the Stuxnet attack involved the use of corrupted certificates of trust from 

approved authorities as false credentials that allowed evolutionary system updates 

to go forward, it seems clear that additional preventions are needed that are external 

to, and prior to, their installation and run-time deployment. In our case, that means 

that we need to specify and analyze software security requirements and evolutionary 

update capabilities at architectural design-time and system integration build-time, 

and then reconcile those with the run-time system composition. It also calls for the 

need to maintain the design-time, build-time, and run-time system compositions in 

repositories remote from system installations, and in possibly redundant locations 

that can be encrypted, randomized, fragmented, and dispersed (e.g., via Torrents or 

“onion routing”) then cross-checked and independently verified prior to run-time 

deployment in a high security system application.  

As already noted, both software intellectual property licenses and security 

licenses represent a collection of rights and obligations for what can or cannot be 

done with a licensed software component. Licenses thus denote non-functional 

requirements that apply to a software system or system components as intellectual 

property (IP) or security requirements (i.e., capabilities) during their development 

and deployment. However, rights and obligations are not limited to concerns or 
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constraints applicable only to software as IP. Instead, they can be written in ways 

that stipulate non-functional requirements of different kinds. Consider, for example, 

that desired or necessary software system security properties can also be expressed 

as rights and obligations addressing system confidentiality, integrity, accountability, 

system availability, and assurance (Breaux & Anton, 2005, 2008). Traditionally, 

developing robust specifications for non-functional software system security 

properties in natural language often produces specifications that are ambiguous, 

misleading, inconsistent across system components, and lacking sufficient details 

(Yau & Chen, 2006). Using a semantic model to formally specify the rights and 

obligations required for a software system or component to be secure (Breaux & 

Anton, 2005, 2008; Yau & Chen, 2006) means that it may be possible to develop 

both a “security architecture” notation and model specification that associates given 

security rights and obligations across a software system or system of systems. 

Similarly, it suggests the possibility of developing computational tools or interactive 

architecture development environments that can be used to specify, model, and 

analyze a software system’s security architecture at different times in its 

development—design-time, build-time, and run-time. The approach we have been 

developing for the past few years for modeling and analyzing software system IP 

license architectures for OA systems (Alspaugh, Asuncion, et al., 2009b, 2010; 

Aslpaugh, Scacchi, et al., 2010; Scacchi & Alspaugh, 2008) may therefore be 

extendable to also being able to address OA systems with heterogeneous “software 

security license” rights and obligations. Furthermore, the idea of common or 

reusable software security licenses may be analogous to the reusable security 

requirements templates proposed by Firesmith (2004) at the Software Engineering 

Institute. But such an exploration and extension of the semantic software license 

modeling, meta-modeling, and computational analysis tools to also support software 

system security can be recognized as a promising next stage of our research 

studies.  
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C. Secure Open Architecture Composition   

Open architecture (OA) software is a customization technique introduced by 

Oreizy (2000) that enables third parties to modify a software system through its 

exposed architecture, evolving the system by replacing its components. Increasingly 

more software-intensive systems are developed using an OA strategy, not only with 

open source software (OSS) components but also proprietary components with open 

APIs. Similarly, these components may or may not have their own security 

requirements that must be satisfied during their build-time integration or run-time 

deployment, such as registering the software component for automatic update and 

installation of new software versions that patch recently discovered security 

vulnerabilities or prevent invocation of known exploits. Using this approach can 

lower development costs and increase reliability and function as well as adaptively 

evolve software security (Scacchi & Alspaugh, 2008). Composing a system with 

heterogeneously secured components, however, increases the likelihood of 

conflicts, liabilities, and no-rights stemming from incompatible security requirements. 

Thus, in our work we define a secure OA system as a software system consisting of 

components that are either open source or proprietary with open API, whose overall 

system rights at a minimum allow its use and redistribution, in full or in part, such 

that they do not introduce new security vulnerabilities at the system architectural 

level.  

It may appear that using a system architecture that incorporates secure OSS 

and proprietary components and uses open APIs will result in a secure OA system. 

However, not all such architectures will produce a secure OA because the (possibly 

empty) set of available license rights for an OA system depends on (a) how and why 

secure or insecure components and open APIs are located within the system 

architecture, (b) how components and open APIs are implemented, embedded, or 

interconnected, and (c) the degree to which the IP and security licenses of different 

OSS components encumber all or part of a software system’s architecture into which 

they are integrated (Alspaugh & Anton, 2008; Scacchi & Alspaugh, 2008).  
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The following kinds of software elements appearing in common software 

architectures can affect whether the resulting systems are open or closed (Bass, 

Clements, & Kazman, 2003).  

Software source code components—These can be either (a) standalone 

programs, (b) libraries, frameworks, or middleware, (c) inter-application script code 

such as C shell scripts, (d) intra-application script code, such as for creating Rich 

Internet Applications using domain-specific languages such as XUL for the Firefox 

Web browser (Feldt, 2007) or “mashups” (Nelson & Churchill, 2006), whose source 

code is available and they can be rebuilt, or (e) similar script code that can either 

install and invoke externally developed plug-in software components or invoke 

external application (helper) components. Each may have its own distinct IP/security 

requirements.  

Executable components—These components are in binary form and the 

source code may not be open for access, review, modification, or possible 

redistribution (Rosen, 2005). If proprietary, they often cannot be redistributed, and so 

such components will be present in the design- and run-time architectures but not in 

the distribution-time architecture.  

Software services—An appropriate software service can replace a source 

code or executable component.  

Application programming interfaces/APIs—Availability of externally visible 

and accessible APIs is the minimum requirement for an “open system” (Meyers & 

Oberndorf, 2001). 

Software connectors—The intended purpose of this software is to provide a 

standard or reusable way of communication through common interfaces (e.g., High 

Level Architecture [Kul, Weatherly, & Dahmann, 1999], CORBA, MS .NET, 

Enterprise Java Beans, and GNU Lesser General Public License [LGPL] libraries). 
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Connectors can also limit the propagation of IP license obligations or provide 

additional security capabilities.  

Methods of connection—These include linking as part of a configured 

subsystem, dynamic linking, and client-server connections. Methods of connection 

affect license obligation propagation, with different methods affecting different 

licenses.  

Configured system or subsystem architectures—These are software 

systems that are used as atomic components of a larger system and whose internal 

architecture may comprise components with different licenses, affecting the overall 

system license and its security requirements. To minimize license interaction, a 

configured system or sub-architecture may be surrounded by what we term a license 

firewall, namely a layer of dynamic links, client-server connections, license shims, or 

other connectors that block the propagation of reciprocal obligations.  

Figure 2 shows a high-level, run-time view of a composed OA system whose 

reference architectural design in Figure 3 includes all of the kinds of software 

elements listed in the previous paragraphs. This reference architecture has been 

instantiated in a build-time configuration in Figure 4 that in turn could be realized in 

alternative run-time configurations in Figures 5, 6, and 7 with different security 

capabilities. The configured systems consist of software components such as a 

Mozilla Web browser, Gnome Evolution email client, and AbiWord word processor 

(similar to MS Word), all running on a RedHat Fedora Linux operating system 

accessing file, print, and other remote networked servers such as an Apache Web 

server. The components are interconnected through a set of software connectors 

that bridge the interfaces of components and combine the provided functionality into 

the system’s services. However, note how the run-time software architecture does 

not pre-determine how security capabilities will be assigned and distributed across 

different variants of the run-time composition. 
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Figure 2. An Example Composite OA System Potentially Subject to Different  
IP and Security Licenses
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Figure 3. The Design-Time Architecture of the System in Figure 2  
That Specifies a Required Security Containment Vessel Scheme
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Figure 4. A Secure Build-Time Architecture Describing the Version Running in  
Figure 2 with a Specified Security Containment Vessel Scheme
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Figure 5. Instantiated Build-Time OA System with Maximum Security  
Architecture of Figure 4 Via Individual Security Containment Vessels for Each 

System Element



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - 17 - 
k^s^i=mlpqdo^ar^qb=p`elli=

 

 

Figure 6. Instantiated Build-Time OA System with Minimum Security Architecture  
of Figure 4 Via a Single Overall Security Containment Vessel for the Complete 

System Using a Common Software Hypervisor
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Figure 7. Instantiated Build-Time OA System with Mixed Security Architecture of  
Figure 4 Via Security Containment Vessels for Some Groupings of System 

Elements 

D. OA System Evolution  

An OA system can evolve by a number of distinct mechanisms, some of 

which are common to all systems but others of which are a result of heterogeneous 

IP and security licenses in a single system.  

1. By component evolution 

One or more components can evolve, altering the overall system’s 

characteristics (for example, upgrading and replacing the Firefox Web browser from 

version 3.5 to 3.6, which may update existing software functionality while also 

patching recent security vulnerabilities).  
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2. By component replacement 

One or more components may be replaced by others with different behaviors 

but the same interface, or with a different interface and with the addition of shim 

code to make it match (for example, replacing the AbiWord word processor with 

either Open Office or MS Word, depending on which is considered the least 

vulnerable to security attack).  

3. By architecture evolution 

The OA can evolve, using the same components but in a different 

configuration, altering the system’s characteristics. For example, as discussed in 

Section 3, changing the configuration in which a component is connected can 

change how its IP or security license affects the rights and obligations for the overall 

system. This could arise when replacing email and word processing applications 

with web services like Google Mail and Google Docs, which we might assume may 

be more secure because the Google services (operating in a cloud environment) 

may not be easily accessed or penetrated by a security attack. 

4. By component license evolution 

The license under which a component is available may change, as for 

example when the license for the Mozilla core components was changed from the 

Mozilla Public License (MPL) to the current Mozilla Disjunctive Tri-License; or the 

component may be made available under a new version of the same license, as for 

example when the GNU General Public License (GPL) version 3 was released. 

Similarly, the security license for a component may be changed by its producers, or 

the security license for a composed system changed by its integrators, in order to 

prevent or deter recently discovered security vulnerabilities or exploits before an 

evolutionary version update (or patch) can be made available.  
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5. By a change to the desired rights or acceptable obligations 

The OA system’s integrator or consumers may desire additional IP or security 

license rights (for example the right to sublicense in addition to the right to 

distribute), or no longer desire specific rights; or the set of license obligations they 

find acceptable may change. In either case, the OA system evolves, whether by 

changing components, evolving the architecture, or other means in order to provide 

the desired rights within the scope of the acceptable obligations. For example, they 

may no longer be willing or able to provide the source code for components that 

have known vulnerabilities that have not been patched and eliminated.  

 

Figure 8. A Second Instantiation at Run-Time  

Note. This is the OA system in Figures 2, 3, and 4 (Firefox, Google Docs and 

Calendar operating within different Firefox run-time sessions, Fedora) as an 

evolutionary alternative system version, which requires an alternative security 

containment scheme. 
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The interdependence of integrators and producers results in a co-evolution of 

software within an OA ecosystem. Closely-coupled components from different 

producers must evolve in parallel in order for each to provide its services, as 

evolution in one will typically require a matching evolution in the other. Producers 

may manage their evolution with a loose coordination among releases, for example 

as between the Gnome and Mozilla organizations. Each release of a producer 

component creates a tension through the ecosystem relationships with consumers 

and their releases of OA systems using those components, because integrators 

accommodate the choices of available, supported components with their own goals 

and needs. As discussed in our previous work (Alspaugh, Asuncion, et al., 2009a), 

license rights and obligations are manifested at each component’s interface, then 

mediated through the system’s OA to entail the rights and corresponding obligations 

for the system as a whole. As a result, integrators must frequently re-evaluate an OA 

system’s IP/security rights and obligations. In contrast to homogeneously-licensed 

systems, license change across versions is a characteristic of OA ecosystems, and 

architects of OA systems require tool support for managing the ongoing licensing 

changes.  

We propose that such support must have several characteristics.  

 It must rest on a license structure of rights and obligations (Section 5), 
focusing on obligations that are enactable and testable.  

 It must take account of the distinctions between the design-time, build-
time, and distribution-time architectures (Sections 3, 5, 6) and the 
rights and obligations that come into play for each of them. 

 It must distinguish the architectural constructs significant for software 
licenses, and embody their effects on rights and obligations (Section 
3).  

 It must define license architectures (Section 6).  

 It must provide an automated environment for creating and managing 
license architectures. We are developing a prototype that manages a 
license architecture as a view of its system architecture (Alspaugh, 
Asuncion, et al., 2009a).  
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 Finally, it must automate calculations on system rights and obligations 
so that they may be done easily and frequently, whenever any of the 
factors affecting rights and obligations may have changed (Section 7).  

E. Security Licenses  

Licenses typically impose obligations that must be met in order for the 

licensee to realize the assigned rights. Common IP/copyright license obligations 

include the obligation to publish at no cost any source code you modify (MPL) or the 

reciprocal obligation to publish all source code included at build-time or statically 

linked (GPL). The obligations may conflict, as when a GPL’d component’s reciprocal 

obligation to publish source code of other components is combined with a 

proprietary component’s license prohibition of publishing its source code. In this 

case, no rights may be available for the system as a whole, not even the right of use, 

because the two obligations cannot simultaneously be met and thus neither 

component can be used as part of the system. Security capabilities can similarly be 

expressed and bound to the data values and control signals that are visible in 

component interfaces, or through component connectors.  

Some typical security rights and obligations might be 

 the right to read data in containment vessel T,   

 the obligation for a specific component to have been vetted for the 
capability to read and update data in containment vessel T,  

 the obligation for a user to verify his/her authority to see containment 
vessel T by password or other specified authentication process, 

 the right to replace specified component C with some other 
component,   

 the right to add or update specified component D in a specified 
configuration, and   

 the right to add, update, or remove a security mechanism. 

The basic relationship between software IP/security license rights and 

obligations can be summarized as follows: if the specified obligations are met, then 
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the corresponding rights are granted. For example, if you publish your modified 

source code and sub-licensed derived works under MPL, then you get all of the MPL 

rights for both the original and the modified code. Similarly, software security 

requirements are specified as security obligations that when met, allow designated 

users or other software programs to access, modify, and redistribute data and 

control information to designated repositories or remote services. However, license 

details are complex, subtle, and difficult to comprehend and track—it is easy to 

become confused or make mistakes. The challenge is multiplied when dealing with 

configured system architectures that compose a large number of components with 

heterogeneous IP/security licenses, so that the need for legal counsel begins to 

seem inevitable (Fontana et al., 2008; Rosen, 2005).  

We have developed an approach for expressing software licenses of different 

types (intellectual property and security requirements) that is more formal and less 

ambiguous than natural language, and that allows us to calculate and identify 

conflicts arising from the rights and obligations of two or more components’ licenses. 

Our approach is based on Hohfeld’s (1913) classic group of eight fundamental jural 

relations, of which we use right, duty, no-right, and privilege. We start with a tuple 

<actor, operation, action, object> for expressing a right or obligation. The actor is the 

“licensee” for all of the licenses we have examined. The operation is one of the 

following: may, must, must not, or need not, with may and need not expressing 

rights and must and must not expressing obligations. The action is a verb or verb 

phrase describing what may, must, must not, or need not be done, with the object 

completing the description. A license may be expressed as a set of rights, with each 

right associated with zero or more obligations that must be fulfilled in order to enjoy 

that right. Figure 9 shows the meta-model with which we express licenses.  
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Figure 9. Security License Meta-Model  

Designers of secure systems have developed a number heuristics to guide 

architectural design in order to satisfy overall system security requirements while 

avoiding conflicts among interacting security mechanisms or defenses. However, 

even using design heuristics (and there are many), keeping track of security rights 

and obligations across components that are interconnected in complex OAs quickly 

becomes too cumbersome. Automated support is needed to manage the complexity 

of multi-component system compositions where different security requirements must 

be addressed through different security capabilities. 

F. Security License Architectures  

Our security license model forms a basis for effective reasoning about 

licenses in the context of actual systems and for calculating the resulting rights and 

obligations. In order to do so, we need a certain amount of information about the 

system’s configuration at design-time, build-time, and run-time deployment. The 
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needed information comprises the license architecture, and an abstraction of the 

system architecture:  

1. the set of components of the system (for example, see Figure 2) for the 
current system configuration, as well as subsequently for system 
evolution update versions (as seen in Figure 8); 

2. the relation mapping each component to its security requirements 
(specified and analyzed at design-time, as exemplified in Figure 3) or 
capabilities (specified and analyzed at build-time in Figure 4 and run-
time across alternatives shown in Figure 5, 6, and 7);  

3. the connections between components and the security requirements or 
capabilities of each connector passing data or control signals to/from it; 
and 

4. possibly other information, such as information to detect or prevent IP 
and security requirements conflicts, which is as yet undetermined. 

With this information and definitions of the licenses involved, we believe it is 

possible to automatically calculate rights and obligations for individual components 

or for the entire system as well as to guide/assess system design and evolution 

using an automated environment of the kind that we have previously demonstrated 

(Alspaugh, Asuncion, et al., 2009a, 2009b, 2010; Alspaugh, Schacchi, et al., 2010).  

G. Security License Analysis  

Given a specification of a software system’s architecture, we can associate 

security license attributes with the system’s components, connectors, and sub-

system architectures, resulting in a license architecture for the system, and we can 

calculate the security rights and obligations for the system’s configuration. Due to 

the complexity of license architecture analysis, and the need to re-analyze every 

time a component evolves, a component’s security license changes, a component is 

substituted, or the system architecture changes, OA integrators really need an 

automated license architecture analysis environment. We have developed a 

prototype of such an environment for analogous calculations for software copyright 
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licenses (Alspaugh, Asuncion, et al., 2009b; Alspaugh, Schacchi, et al., 2010), and 

are extending this approach to security licenses.  

1. Security Obligation Conflicts  

A security obligation can conflict with another obligation, a related right for the 

same or nearby components, or with the set of available security rights by requiring 

a right that has not been granted. For instance, consider two connected components 

C and D with the following security obligations.  

(O1) The obligation for component C to have been vetted for the capability to 
read and update data in containment vessel T  

(O2) The obligation for all components connected to specified component D 
to grant it the capability to read and update data in containment vessel T  

If C has not been vetted, then these two obligations conflict. This possible 

conflict must be taken into consideration in different ways at different development 

times:  

 at design time, ensuring that it will be possible to vet C;  

 at build time, ensuring that the specific implementation of C has been 
vetted successfully; and  

 possibly at run time as well, confirming that C is certified to have been 
vetted, or (if C is dynamically connected at run time) vetting C before 
trusting the connection to it.  

The second obligation may also conflict with the set of available security 

rights, for example if D is connected to component E for which the security right  

(R1) to read and update data in containment vessel T using component E is 
not available.  

The absence of such conflicts does not mean, of course, that the system is 

secure, but the presence of conflicts reliably indicates that it is not secure. 
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2. Rights and Obligations Calculations  

The rights available for the entire system (the right to read and update data in 

containment vessel T, the right to replace components with other components, the 

right to update component security licenses, etc.) are calculated as the intersection 

of the sets of security rights available for each component of the system. If a conflict 

is found involving the obligations and rights of interacting components, it is possible 

for the system architect to consider an alternative scheme (e.g., using one or more 

connectors along the paths between the components that act as a security firewall). 

This means that the architecture and the automated environment together can 

determine what OA design best meets the problem at hand with available software 

components. Components with conflicting security licenses do not need to be 

arbitrarily excluded, but instead may expand the range of possible architectural 

alternatives if the architect seeks such flexibility and choice.  

H. Discussion  

Our approach to specifying and analyzing the security requirements for a 

complex OA system is based on the use of a security license. As noted, a security 

license is a new kind of information structure whose purpose is to declare 

operational capabilities that express the obligations and rights of users or programs 

to access, manipulate, control, update, or evolve data, control signals, and 

accessible software system elements. Our proposed security license is influenced by 

IP licenses that are employed to specify property control and declared copyright 

freedoms/restrictions, such as those for OSS components subject to licenses like the 

GPLv2, MPL, LGPL, or others. These IP licenses as information structures often 

pre-exist to facilitate their widespread use, dissemination, and common 

interpretation. Further, the choice of which IP license to choose or assign to a 

software component results from a trade-off analysis typically performed by the 

components producers, rather than by the system integrators or consumers as a 

way to protect or propagate the obligations and rights to use, evolve, and redistribute 

the updated component's open source code. 
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The security licenses we propose may or not necessarily exist prior to their 

specification and assignment to a given OA system. Similarly, we may anticipate or 

expect that generic security licenses will emerge and be assigned by software 

component producers, as they have for OSS components, though no such security 

licenses from producers yet exist. However, one follow-on goal we seek to address 

is whether and how best to specify security licenses for different types of software 

elements or components so that it becomes possible to semi-automatically specify 

the security license for a given component or composed OA system through the 

reuse and instantiation of security requirement templates. This idea is somewhat 

similar to the license templates and taxonomy that is employed by the Creative 

Commons for non-software intellectual property like online art or new media content 

(see http://creativecommons.org/licenses/). In this regard, it may be possible to 

develop a technique and supporting computational environment whereby system 

integrators or consumers can conveniently specify the security requirements they 

seek (e.g., fill out online security requirements forms), while the environment 

interprets these specifications to generate operational security capabilities that can 

guard the entry and exit of data or control information from the appropriate 

containment vessel that encapsulates the corresponding system element. 

Consequently, this is a topic for further study and investigation. 

Next, one might wonder why it is not simply desirable to have maximum 

system security under all circumstances. When considering the alternative run-time 

system composition variants shown in Figures 5, 6, and 7, it appears that there may 

be trade-offs in one layout of security capabilities over another. For example, the 

layout in Figure 5 maximizes security by encapsulating each system element within 

its own containment vessel. This in turn requires a VM technology of a kind different 

from that commonly available (e.g., like VMware), and instead requires a new 

lightweight VM technology that can provide security capabilities (e.g., create, read, 

update authorizations) for potentially small-scale software elements (e.g., Cshell 

inter-application integration or run-time scripts). Similarly, the different security 

containment layouts may affect system performance, ease of evolutionary update, 
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and associated level of security administration. But these again all represent trade-

offs in the desire to achieve affordable, practical, and evermore robust and testable 

secure software component/system capabilities build-time and run-time. Thus, we 

take the position that it is better to provide the ability to specify and analyze the 

security requirements of different software elements at design-time, as well as to 

specify and analyze the security capabilities at build-time and run-time, rather than 

the current practice that does not account for system architecture nor license 

architecture and is thus inherently vulnerable to attacks that can otherwise be 

prevented or detected. 

One other topic follows from our approach to semantically modeling and 

analyzing OA systems that are subject to software security licenses. More 

specifically, how our approach and emerging results might shed light on software 

systems whose architectures articulate a software product line.  

Accordingly, organizing and developing software product lines (SPLs) relies 

on the development and use of explicit software architectures (Bosch, 2000; 

Clements & Northrop, 2001). However, the architecture of a secure SPL is not 

necessarily a secure OA—there is no requirement for it to be so. Thus, we are 

interested in discussing what happens when SPLs may conform to a secure OA, and 

to an OA that may be composed from secure SPL components. Three 

considerations come to mind.  

First, if the SPL is subject to a single homogeneous security software license, 

which may often be the case when a single vendor or government contractor has 

developed the SPL, then the security license may act to reinforce a vendor lock-in 

situation with its customers. One of the motivating factors for OA is the desire to 

avoid such lock-in, whether or not the SPL components have open or standards-

compliant APIs.  

Second, if an OA system employs a reference architecture much like we have 

in the design-time architecture depicted in Figure 3, which is then instantiated into a 



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - 30 - 
k^s^i=mlpqdo^ar^qb=p`elli=

 

specific software product configuration (as suggested in the build-time architecture 

shown in Figure 4), then such a reference or design-time architecture as we have 

presented it here effectively defines an SPL consisting of possible different system 

instantiations composed from similar components instances (e.g., different but 

equivalent Web browsers, word processors, email, calendaring applications, 

relational database management systems).  

Third, if the SPL is based on an OA that integrates software components from 

multiple vendors or OSS components that are subject to heterogeneous security 

licenses (i.e., those that may possibly conflict with one another), then we have the 

situation analogous to what we have presented in this paper. Thus, secure SPL 

concepts are compatible with secure OA systems that are composed from 

heterogeneously security licensed components. 

I. Conclusion  

This paper introduces the concept and initial scheme for systematically 

specifying and analyzing the security requirements for complex open architecture 

systems. We argue that such requirements should be expressed as operational 

capabilities that can be collected and sequenced within a new information structure 

we call a security license. Such a license expresses security in terms of capabilities 

that provide users or programs with obligations and rights for how they may access 

data or control information as well as how they may update or evolve system 

elements. Thus, these security license rights and obligations play a key role in how 

and why an OA system evolves in its ecosystem of software component producers, 

system integrators, and consumers.  

We note that changes to the license obligations and rights, whether for control 

of intellectual property or software security, across versions of components is a 

characteristic of OA systems whose components are subject to different security 

requirements or other license restrictions. A structure for modeling software licenses 
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and automated support for calculating its rights and obligations are needed in order 

to manage an OA system’s evolution in the context of its ecosystem.  

We have outlined an approach for achieving these and sketched how they 

further the goal of reusing components in developing software-intensive systems. 

Much more work remains to be done, but we believe that this approach turns a 

vexing problem into one for which workable, as well as robust formal, solutions can 

be obtained.  
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Abstract 

Heterogeneously licensed systems pose new challenges to architects and 

designers seeking to develop systems with appropriate intellectual property rights 

and obligations. In extreme cases, license conflicts may prevent a system’s legal 

use. Our previous work showed that rights, obligations, and conflicts can be 

calculated. However, architects benefit from fuller information than simply (for 

example) a list of conflicts. In this work we demonstrate an approach for presenting 

intellectual property results in terms of the arguments supporting them. The network 

of argumentation provides not only an explanation of each conclusion, but also a 

guide to the tradeoffs available in choosing among design alternatives with different 

licensing results. The approach has been integrated into the ArchStudio software 

architecture environment. We present an illustrative example of its use. 

A. Introduction 

An increasing number of development organizations are adopting a strategy 

in which software-intensive systems are composed of heterogeneously licensed 
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(HtL) components, with different components governed by different software 

licenses. The components are either open source software (OSS) or proprietary 

software with open application programming interfaces (APIs), and are combined in 

an open architecture (OA) in which components with comparable interfaces can be 

substituted for each other (Oreizy, 2000). Under this strategy the development 

organization becomes an integrator of components largely produced elsewhere, 

interconnected to achieve the desired result. 

The resulting OA systems can achieve reuse benefits such as reduced costs, 

increased reliability, and potentially increased agility in evolving to meet changing 

needs. However, rather than a single proprietary license as when acquired from a 

proprietary vendor, or a single OSS license as in uniformly licensed OSS projects, 

the resulting system typically has no recognized single software license. Instead it 

has, strictly speaking, a virtual license (Alspaugh, Asuncion, & Scacchi, 2009) 

composed of each component’s rights and obligations for that component under its 

governing license. The rights available for the system as a whole are the intersection 

of the rights sets for each component. In some cases the licenses may produce 

conflicting obligations and this intersection is empty, leaving a system that cannot 

legally be used, distributed, or modified. An emerging challenge is to realize the 

reuse benefits of HtL systems while managing virtual licenses in order to ensure that 

the desired system rights are available for an acceptable set of obligations. 

In our previous work (summarized in Section 4) we described and 

implemented a novel approach for calculating conflicting obligations, unavailable 

rights, and virtual licenses in an architectural design context. Calculation is 

necessary because the number of entailments in a typical HtL system is large, the 

system’s architecture is constantly evolving, its design-, distribution-, and run-time 

architectures are often distinct, component licenses evolve and components are 

relicensed, and the consequences of infringement can be substantial. Therefore, 

identifying conflicts and virtual licenses through calculation is a substantial boon. 

However, we soon realized that explaining them was of even greater value.  
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We present an approach in which arguments are used to explain the results 

of right and obligation calculations. The calculations proceed by elaborating a 

directed acyclic graph (dag) of inferences among rights to obligations for entities in 

the system architecture. In this work we reimplemented the software that performs 

the calculations so that the dag is retained in its entirety as the primary calculation 

product, containing within it the obligation conflicts, unavailable rights, and virtual 

license for the system under analysis. Then an explanation for a specific result 

corresponds to the traversal of a path through the dag, starting at the result in 

question and continuing until the question has been answered. 

 Conflicting obligations—The traversal branches for each obligation 
to show the desired rights, license provisions, and architectural entities 
from which that obligation is produced, and at the root of the traversal, 
show in what ways the obligations conflict.  

 Unavailable rights—For each such right, a traversal identifies the 
exclusive copyright right that subsumes the right in question, the 
architectural entity to which the right pertains, and why no right in the 
entity’s license grants the right in question. 

 Virtual license—Traversals show the chains of inference by which 
each right and obligation is entailed by the system architecture, the 
stated license for each component, and the desired rights for the 
system as a whole.  

The dag calculation algorithm follows the steps of legal reasoning (formalized 

to support automation) by which an informed analyst would reason out the results. 

Thus, the traversals follow inference paths that follow (in more detail) the paths by 

which an analyst reasons out the same conclusions. 
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Figure 1. A Claim, Supported by Grounds, Their Pertinence to the  
Claim Justified by a Warrant, Whose Validity is Supported by Backing 

(diagram after [14]) 

B. Related Work 

The most influential approach for structuring legal arguments is that of 

Toulmin, Rieke, and Janik (1984), who classified the parts of arguments into claims, 

grounds, warrants, backing, qualifiers, and rebuttals, in a recursive structure with a 

diagrammatic notation outlined in Figure 1. This approach has spread beyond the 

area of legal arguments and is used in general rhetoric and computer science. 

Toulmin divides arguments into 

1. claims asserted to be true; 

2. for each claim whose truth is disputed, one or more grounds 
supporting it; 

3. if it is disputed whether a claim’s grounds suffice for it, then a warrant 
stating why the grounds entail the claim; and 

4. if the warrant is disputed, then backing supporting it. 

If a ground or backing is disputed, then it is made the claim of a lower level 

argument constructed in its support. The recursion of arguments continues as long 

as grounds or backings are in dispute, or until the original claim is abandoned. 

(Qualifiers and rebuttals address the degree of strength of arguments, and are not 

used in the present work.) 
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Hohfeld (1913) sought a theory by which to resolve the imprecise terminology 

and ambiguous classifications he found in use for legal relationships. In a seminal 

article published in 1913 and cited to the present day, he set forth a system of eight 

jural relations intended to express and classify all legal relationships between 

people. The first four regulate ordinary actions and are right (may), no-right (cannot), 

duty (must), and privilege (need not). Each relation has an opposite relation whose 

sense is its opposite, and a correlative relation whose sense is its complement. We 

use Hohfeld’s first four jural relations as the basis of our representation of the 

enactable, testable provisions of software licenses (Section 4).  

There has been much work on analysis of laws in AI over the past few 

decades. A widely-cited example is Sergot et al.’s (1986) re-expression of the British 

Nationality Act as a Prolog program; the resulting program applied the Act to any 

person’s situation and characteristics in order to determine nationality (Sergot et al., 

1986). 

A number of researchers have used argumentation to guide decision-making, 

notably Haley, Laney, Moffett, and Nuseibeh (2008) who propose an approach for 

using satisfaction arguments to evaluate and guide the evolution of security 

requirements. Decision choices for which no convincing argument is found are set 

aside in favor of choices for which stronger arguments have been identified. 

C. Licensing Background 

1. Intellectual Property (IP) 

An individual can own a tangible thing and have property rights in it, such as 

the rights to use it, improve it, sell it or give it away, or prevent others from doing so, 

subject to some statutory restrictions. Similarly, an individual can own intellectual 

property (IP) of various types and have specific property rights in the intangible 

intellectual property, such as the rights to copy, use, change, distribute, or prevent 

others from doing so, again subject to some statutory restrictions. Software licenses 

are primarily concerned with copyrights. Copyright is defined by Title 17 of the U.S. 
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Code and by similar law in many other countries. It grants exclusive rights to the 

author of an original work in any tangible means of expression; namely the rights to 

 reproduce the copyrighted work, 

 distribute copies,  

 prepare derivative works,  

 distribute copies of derivative works, and  

 (for certain kinds of work) perform or display it.  

Because the rights are exclusive, an author can prevent others from 

exercising them, except as allowed by “fair use,” or an author can grant others any 

or all of the rights or any part of them; one of the functions of a software license is to 

grant such rights and define the conditions under which they are granted. 

2. Software Licenses 

Traditional proprietary licenses allow a company to retain control of software it 

produces and restrict the access and rights that outsiders can have. OSS licenses, 

on the other hand, encourage sharing and reuse of software and grant access and 

as many rights as possible. 

Academic OSS licenses such as the Berkeley Software Distribution (BSD) 

license, the Apache Software License, and perl’s Artistic License (Alspaugh, n.d.) 

grant nearly all rights and impose few obligations. Typical academic license 

obligations are simply to not remove the copyright and license notices. 

Reciprocal OSS licenses impose an obligation that distributed modifications 

of reciprocally licensed software be freely licensed under the same license. 

Examples are the Lesser General Public License (LGPL), Mozilla Public License 

(MPL), and Common Public License (Alspaugh, n.d.). 

Some reciprocal licenses additionally require that software combined with the 

licensed software (for various definitions of “combined”) also be freely licensed 
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under the same license. We term such licenses propagating; they are also known as 

strong copyleft licenses. Examples are the General Public License versions 2 and 3 

(GPLv2, GPLv3; Alspaugh, n.d.). 

Some OSS is multiply licensed, or distributed under two or more licenses. 

The MySQL database software is distributed either under GPLv2 for OSS projects or 

a proprietary license for commercial projects. The Mozilla Disjunctive Tri-License 

licenses the core Mozilla components under any of three licenses (MPL, GPL, or 

LGPL). 

3.  Licenses and Software Architectures 

Certain classes of architectural features affect the application and 

propagation of license provisions. The most common such features are listed below. 

A software architecture is composed of components, each of which is a “locus of 

computation and state” in a system, and connectors which link them and mediate 

interactions between them. 

Software source code components—These can be 

 standalone programs, 

 libraries, frameworks, or middleware, 

 inter-application script code such as C shell scripts, or 

 intra-application script code, for creating Rich Internet Applications 
using domain-specific languages like XUL for the Firefox Web browser 
[6] or “mashups”[9]. 

The distinguishing characteristic of a source code component is that its 

source code is available and it can be modified and rebuilt. Each may have its own 

explicit license, though often script code connecting programs and data flows has no 

stated license unless the script is substantial or proprietary. 

Executable components—These components are in binary form, with 

source code not available for access, review, modification, or possible redistribution 
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(Rosen, 2005). If proprietary, they often cannot be redistributed, and so such 

components will be present in the design- and run-time architectures but not in the 

distribution-time architecture. 

Software services—An appropriate software service can replace a source 

code or executable component. 

APIs—These are not and cannot be licensed, but connections through APIs 

can be used to limit the propagation of some license obligations. 

Software connectors—These are software elements providing a standard or 

reusable way of communication through common interfaces, such as High Level 

Architecture, CORBA, or Enterprise Java Beans. Connectors can also limit the 

propagation of some license obligations. 

Methods of composition—These include linking as part of a configured 

subsystem, dynamic linking, and client-server connections. Methods of composition 

affect license obligation propagation, with different methods affecting different 

licenses. How and to what extent this occurs have not been resolved in court or in 

practice (Determann, 2006; Stoltz, 2005). 

Configured system or subsystem architectures—These are software 

systems used as atomic components of a larger system. Their internal architecture 

may contain subcomponents under several licenses, which may affect the rights and 

obligations for the configured (sub)system and the overall system containing it. To 

minimize license interaction, a configured system or subsystem architecture may be 

surrounded by what we term a license firewall (Alspaugh et al., 2009), namely a 

layer of dynamic links, client-server connections, license shims, or other connectors 

that block the propagation of obligations. 
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4.  Heuristics for Designing HtL Systems 

HtL system designers have developed heuristics to guide architectural design 

while avoiding some license conflicts. 

First, it is possible to use a reciprocally licensed component through a license 

firewall that limits the scope of reciprocal obligations for specific licenses (depending 

on how the license provisions are interpreted). Rather than connecting conflicting 

components directly through static build-time links, the connection is made through a 

dynamic link, client-server protocol, license shim, or run-time plug-in. 

A second approach used by a number of large organizations is to avoid using 

any components with reciprocal licenses. Even using design heuristics such as 

these, keeping track of license rights and obligations across components that are 

interconnected in complex OAs quickly becomes cumbersome. Organizations 

wishing to follow a “best-of-breed” component selection policy, without regard to 

component licenses, face even steeper challenges. Automated support is needed to 

manage this multi-component, multi-license complexity. 

D.  License Rights and Obligations 

In our previous work (Alspaugh et al., 2009) we developed an approach for 

expressing software licenses that is more formal and less ambiguous than natural 

language, and that allows us to calculate rights and obligations for an HtL system 

and identify conflicts arising from the rights and obligations of two or more 

component’s licenses. Our approach is based on Hohfeld’s (1913) eight fundamental 

jural relations, of which we use right (may), duty (must), no-right (must not), and 

privilege (need not; see Figure 2). Each relation has a correlative relation, which in 

our context relates an obligation to its necessary right: 

 if actor A must perform action X, then A requires the correlative right to 
perform it, expressed as “A may X;” 



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - 44 - 
k^s^i=mlpqdo^ar^qb=p`elli=

 

  if actor A must not perform action X, then A requires the correlative 
right to not perform it, “A need not X.” 

We express rights and obligations as tuples (Figure 3): <actor, modality, 

action, object, license> The actor is either the “Licensee” or in a few cases 

“Licensor” for all of the enactable, testable provisions of the licenses we have 

examined (Alspaugh, Scacchi, & Asuncion, 2010). The modality is may or need not 

for a right and must or must not for an obligation. The action is a verb phrase acting 

on an object, describing what may, need not, must, or must not be done. The object 

is a module of the system or a related artifact such as a source file, the original 

version, documentation, and so forth. Typically a license right applies to any of a 

class of objects distributed under the license, such as any binary file or any modified 

source file; and the right’s obligations will apply to the same object or a related 

object, such as the right’s object’s sources or the right’s object’s originals. For this 

reason we term rights and obligations as expressed in a license abstract in contrast 

to a concrete right or obligation for one specific entity. Some actions are 

parameterized by a license as well. 

 

Figure 2. Hohfeld’s Four Basic Relations 
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Figure 3. Metamodel for Software Licenses 

Because copyright rights are exclusive to the copyright holder and licensees, 

the actions in copyright rights are distinguished from other actions; rights with those 

actions are only available through the object’s license. Rights formed from all other 

actions are freely and immediately available, unless the object’s license obligations 

restrict them. 

A license is expressed as a set of rights, each right associated with zero or 

more obligations that must be fulfilled to be granted it, and possibly a set of overall 

obligations that must be fulfilled for the license as a whole. Figure 4 sketches two 

rights from GPL version 2.0 (GPLv2), the first with no obligations and the second 

with three corresponding obligations. 

The details of the license specification approach are described in our earlier 

work (Alspaugh et al., 2009; Alspaugh et al., 2010). 
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Figure 4. Some Tuples for the GPLv2 License 

E. Applying Licenses to Software 

1.  Calculating the Inference Dag 

In order to obtain a particular desired right r for a specific module or other 

entity e, in other words a desired concrete right, one of two cases must hold: 

1. r is not subsumed by any of the five copyright rights and does not 
conflict with any general obligation of r’s license L. In this case r is 
freely available. 

2. r is subsumed by an abstract right R of the license, with e likewise 
subsumed by R’s object. In this case all R’s obligations O1, O2, . . . , 
on must be fulfilled, with their objects replaced by whatever function of 
e they signify in order for r to be granted. These could be e itself, all 
sources of e, the original version of e, and so forth. N may be zero, in 
which case L immediately grants r. 

Figure 5 illustrates one step of the application of a license to obtain a desired 

concrete right r. The license of r’s object shows two obligations O1 and O2 of R, 

which we apply to r’s object e in order to obtain r’s concrete obligations o1 and o2. 

Depending on what kind of object O1 has, o1 could apply to e itself, in which case e 

= e'1, or to an entity related to e, or (if L is a propagating license) to another module 

linked or otherwise connected to e. Finally, in order to fulfill o1 we must have o1’s 

correlative right r'1. The same considerations apply for O2, of course. The heavy 

arrow shows the flow of inference from desired concrete right through to required 

concrete obligations and correlative rights.  
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If r'1 (r'2) is immediately available, its branch of the inference is complete. If 

not, the process recurses from r'1 (r'2). 

The license rights and obligations for an entire system are calculated by 

repeating this process for every module of the system. If all modules are under the 

same license, analogous rights and obligations are obtained for every module. If the 

system is heterogeneously licensed, however, the calculation is much more varied, 

and if some of the modules are propagationally licensed then a right for one of those 

modules can produce obligations for other modules of the system. Such an 

architecture can easily result in license conflicts, as for example when a license 

propagates the obligation to be sublicensed under the same license to a proprietary 

component whose license forbids sublicensing. In such a case, the calculation will 

fail to produce a simultaneously satisfiable collection of obligations, and no rights will 

be available for the system as a whole. 
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Figure 5. A Step in a Rights/Obligations Inference 

Figure 6 shows in Toulmin form a portion of an example inference that 

produces a conflict, involving a component e1 obtained under GPLv2 and modified, 

linked to a component e2 obtained under the proprietary Corel Transactional 

License (CTL; Alspaugh, n.d.). The architectural connection between e1 and e2 is 

one that is interpreted for this inference as propagating GPLv2 obligations, such as a 

static link. The right to distribute copies of the containing system is desired. In our 

prototype implementation (Figure 8) these arguments are presented in outline form, 

with the claim as the root of the outline and its grounds and warrant as its subheads, 
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to be expanded as desired if further explanation is needed. A typical use would be 

the following: 

1. Why does the WordProcessor component need to be sublicensed 
under GPLv2? 

2. It is in the static-linked scope of the GnomeEvolution component; that 
component is annotated with the GPLv2 license; and GPLv2 obligates 
sublicensing under GPLv2 (GPLv2 x2.2{1.bs1). 

3. Why can’t the WordProcessor component be sublicensed under 
GPLv2? 

4. The WordProcessor component in the architecture has been annotated 
with the CTL license, and CTL forbids sublicensing under any license 
(CTL x4{1s1w15). 
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Figure 6. Toulmin-structured Arguments Supporting (and explaining) a  
typical conflict between obligations for a GPLv2 and a proprietary component 

2. Explanation by Argumentation 

Figure 7 shows the two explanation flows for a conflict between obligations. 

Each flow begins at the conflict and explains how one half of the conflicting pair 

came to be. The connection between the pair is straightforward because they are 

identical except for their modalities which are always must for one and must not for 

the other. The flow and the required explanations are analogous for a right-obligation 
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conflict, with the right and obligation again identical except for their modalities, which 

are always opposites, either may and must not or must and need not. 

 

Figure 7. Divided explanation flow for a conflict between two obligations 
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After examining the kinds of information that are available in the vicinity of a 

problem (a conflict or unavailable right), we realized that the inferences leading up to 

it provide the clearest insight into what the problem signifies and why it is present.  

 The chains of inference leading up to the problem constitute precisely 
the portion of the calculation relevant to the problem. No other parts of 
the calculation—or of the applications of license provisions, determined 
by the architecture and its annotations, that the calculation identifies—
affect whether the problem is present or not. 

 The inferences place the problem in the context of licenses, 
components and their annotations, and architectural configuration — 
the context in which a designer using the tool is already working. 

 Each chain of inference, followed in reverse, provides an unfolding 
explanation for the problem’s presence, which an analyst can explore 
as far as it is helpful in providing understanding and insight. 

Each step of a chain of inference is a point at which it can be broken—by 

replacing a component with one differently licensed, replacing one or more 

connectors to firewall off a propagating obligation, replacing a build-time component 

with one provided by users at run time, or other design decisions. 

3.  Automation 

The license metamodel, calculation, and an assortment of license 

interpretations are implemented in a Java package. The calculation builds the entire 

dag, which is then available for presentation in whatever ways are desired. Each 

abstract right and obligation in a license interpretation has its provenance in the 

license or interpretation for use in explanations. The package supports the addition 

and use of new interpretations. 

The package is connected into the system design context by its integration 

into an ArchStudio 4 plugin (Dashofy et al., 2007). The plugin maps features of 

software architectures onto the license architecture abstraction needed for the virtual 

license calculation and displays results in the context of the architecture. 
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The argument grounds drawn from the texts of licenses are implemented 

through URLs hyperlinking into our collection of software licenses tagged for 

reference with x-{-sentence word numbers (Alspaugh, n.d.). Each URL cites the 

sentence or phrase from which a right or obligation arises. Word-level ids allow 

references to, for example, #S2.2p1.bs1w11 for the phrase beginning at word 11 of 

that sentence. 

F.  Conclusion 

HtL system design and development provide important benefits but impose 

new demands difficult to meet using only manual methods and human insight. Our 

approach for supporting HtL development and acquisition automates the calculation 

of HtL system virtual licenses. We have integrated it into a software architecture tool 

so that it can be applied at the point in the development process when the necessary 

information is available and the relevant design decisions are made. A key benefit it 

provides is the automated calculation of license conflicts, desired but unavailable 

rights, and virtual licenses. However, explaining them is of even greater value. 

We present a novel approach that presents each conflict in the form of 

structured arguments showing why each conflict exists and (by implication) points of 

attack for eliminating it. These arguments provide an informative presentation that 

brings together all of the available information in a compact, evocative form that is 

easier to interpret, act on, and verify. 
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Abstract  

This paper examines what is known so far about the role of open source 

software development within the world of game mods and modding practices. Game 

modding has become a leading method for developing games by customizing or 

creating OSS extensions to game software in general, and to proprietary closed 

source software games in particular. What, why, and how OSS and CSS come 

together within an application system is the subject for this study. The research 

method is observational and qualitative so as to highlight current practices and issues 

that can be associated with software engineering and game studies foundations. 

Numerous examples of different game mods and modding practices are identified 

throughout. 

A. Introduction 

User modified computer games, hereafter game mods, are a leading form of 

user-led innovation in game design and game play experience. But modded games 

are not standalone systems because they require the user to have an originally 

acquired or licensed copy of the unmodded game software. 

Modding, the practice and process of developing game mods, is an approach 

to end-user game software engineering (Burnett, Cook, & Rothermel, 2004) that 

establishes both social and technical knowledge for how to innovate by wresting 

control over game design from their original developers. At least four types of game 

mods can be observed: user interface customization, game conversions, machinima, 
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and hacking closed game systems.  Each supports different kinds of open source 

software (OSS) extensions to the base game or game run-time environment. Game 

modding tools and support environments that support the creation of such 

extensions also merit attention. Furthermore, OSS game extensions are commonly 

applied to either proprietary, closed source software (CSS) games, or to OSS 

games, but generally more so to CSS games. Why this is so also merits attention. 

Subsequently, we conceive of game mods as covering customizations, tailorings, 

remixes, or reconfigurations of game embodiments, whether in the form of game 

content, software, or hardware denoting our space of interest.  

The most direct way to become a game mod developer (a game modder) is 

through self-tutoring and self-organizing practices. Modding is a form of learning—

learning how to mod, learning to be a game developer, learning to become a game 

content/software developer, learning computer game science outside or inside an 

academic setting, and more (El-Nasr & Smith, n.d.; Scacchi, 2004). Modding is also 

a practice for learning how to work with others, especially on large, complex 

games/mods. Mod team efforts may also self organize around emergent software 

development project leaders or “want to be” (WTB) leaders, as seen for example in 

the Planeshift (see http://www.planeshift.it/) OSS massively multiplayer online role-

playing game (MMORPG) development and modding project (Scacchi, 2004). 

Game mods, modding practices, and modders are in many ways quite similar 

to their counterparts in the world of OSS development, even though they often seem 

isolated to those unaware of game software development. Modding is increasingly a 

part of mainstream technology development culture and practice, especially so for 

games, but also for hardware-centered activities like automobile or personal 

computer customization. Modders are players of the games they reconfigure, just as 

OSS developers are also users of the systems that they develop. There is no 

systematic distinction between developers and users in these communities other 

than that there are many users/players that may contribute little beyond their usage, 

word of mouth they share with others, and their demand for more such systems. At 
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OSS portals like SourceForge.net, the domain of “Games” is the second most 

popular project category with nearly 42,000 active projects, or 20% of all projects.1 

These projects develop either OSS-based games, game engines, or game 

development tools/Software Development Kits (SDKs), and all of the top 50 projects 

have each logged more than one million downloads. Thus, the intersection of games 

and OSS covers a substantial socio-technical plane, as game modding and 

traditional OSS development are participatory, user-led modes of system 

development that rely on continual replenishment of new participants joining and 

migrating through project efforts, as well as new additions or modifications of 

content, functionality, and end-user experience (Scacchi, 2002, 2004, 2007). 

Modding and OSS projects are in many ways experiments to prototype alternative 

visions of what innovative systems might be in the near future, and so both are 

widely embraced and practiced primarily as a means for learning about new 

technologies, new system capabilities, new working relationships with potentially 

unfamiliar teammates from other cultures, and more (Scacchi, 2007). 

Consequently, game modding appears to be (a) emerging as a leading 

method for developing or customizing game software, (b) primarily reliant on the 

development and use of OSS extensions as the ways and means for game 

modding, and (c) overlapping a large community of OSS projects that develop 

computer game software and tools that has had comparatively little study. As such, 

the research questions that follow are why do these conditions exist, how have they 

emerged, and how are they put into practice in different game modding efforts. 

This paper seeks to examine what is known so far about game mods and 

modding practices. The research method in this study is observational and 

qualitative. It seeks to snapshot and highlight current practices that can be 

                                            

1  See http://www.sourceforge.net/softwaremap/index.php, accessed 15 April 2011. The 
number one category of projects is for “Development” with more than 65K OSS projects, out of 210K 
projects. So OSS Development and OSS Games together represent half of the projects currently 
hosted on SourceForge. 
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associated with software engineering and game studies, as well as how these 

practices may be applied in CSS versus OSS game modding. Numerous examples 

of different game mods and modding practices are identified throughout in order to 

help establish an empirically grounded baseline of observations from which further 

studies can build or refute. Furthermore, the four types of game mods and modding 

practices identified in this paper have been employed first-hand in game 

development projects led or produced by the author. Such observation can 

subsequently serve as a basis for further empirical study and technology 

development that ties together computer games, OSSD, software engineering, and 

game studies (Scacchi, 2002, 2004, 2007, 2010). 

B.  Related Work 

Two domains of research inform the study here: software extension within the 

field of software engineering and modding as a cultural practice within game studies. 

Each is addressed in turn. 

1. Software Extension 

Game mods embody different techniques and mechanisms for software 

extension. However, the description of game mods and modding is often absent of 

its logical roots or connections back to software engineering. As suggested, mods 

are extensions to existing game software systems, so it is appropriate to review what 

we already know about software extensions and extensibility. 

Parnas (1979) provides an early notion of software extension as an 

expression of modular software design. Accordingly, modular systems are those 

whose components can be added, removed, or updated while satisfying the original 

system functional requirements. Such concepts in turn were integrated into software 

architectural design language descriptions and configuration management tools 

(Narayanaswamy & Scacchi, 1987). However, reliance on explicit software 

architecture descriptions is not readily found in either conventional game or mod 

development. Hentonnen, Matinlassi, Niemela, and Kanstren (2007) examine how 
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software plug-ins support architectural extension, while Leveque, Estublier, and 

Vega (2009)  investigate how extension mechanisms like views and model-based 

systems support extension, also at the architectural level. Last, the modern Web 

architecture is itself designed according to principles of extensibility through open 

APIs, migration across software versions, network data content/hypertext transfer 

protocols, and representational state transfer (Fielding & Taylor, 2002). Mod-friendly 

networked multi-player games often take advantage of these capabilities. 

Elsewhere, Batory, Johnson, MacDonald, and von Heeder (2002) describe 

how domain-specific languages (for scripting) and software product lines support 

software extension, and how now such techniques are used in games that are open 

for modding. Next, OSS development, as a complementary approach to software 

engineering, relies on OSS code and associated online artifacts that are open for 

extension through modification and redistribution of their source representations 

(Scacchi, 2007). Finally, other techniques to extend the functionality or operation of 

an existing CSS system may include unauthorized modifications that might go 

beyond what the end-user license agreement might allow, and so appear to fall 

outside of what software engineering might anticipate or encourage. These include 

extensions via hacking methods like code injection or hooking, whose purpose is to 

gain/redirect control of normal program flow through overloading or intercepting 

system function calls or provide a hidden layer of interpretation, which allow for “man 

in the middle” interventions. Thus, software extensions and extensibility is a 

foundational concept in software engineering, as well as foundational to the 

development of game mods. However, the logical connections and 

common/uncommon legacy of game modding, OSS development, and software 

engineering remain under specified, which this paper begins to address. 

2. Modding as Cultural Practice 

Game modding is a practice for user content creation that creates/networks 

not only game mods but game modders. Within anthropological, behavioral, and 

sociological studies of computer game play, modding has been studied as an 
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emerging cultural practice that mediates both game play and player interaction with 

other players (including the game's developers). In some early studies, modding has 

been designated as a form of “playbour” whereby player actions to create game 

extensions for use by other players is observed as a form of unpaid (or underpaid) 

labor that primarily benefits the financial and property interests of game development 

corporations or hegemonic publishers (Kücklich, 2005; Postigo, 2007; Yee, 2006).  

Game modding also modifies or transforms game play experience, since what 

is play and what is experience(d) are culturally situated. Examples of this may 

include single player games being modded into multi-player games. Therefore, the 

experience of single player versus the game environment is transformed into other 

situations including player versus player, multi-player group play, or team versus 

team play. Similarly, the modding of games to enable experiences other than 

expected game play, like using a modded game for storytelling or film-making 

experiences is also a practice of growing interest, with the emergence of a 

distinguishable community of gamer-filmmakers who produce machinima (described 

in Section 3) as either a literary medium or an art form (Kelland, 2011; Lowood & 

Nitsche, 2011; Marino, 2004). 

Other studies have observed that user/modders also benefit from modding as 

a way to achieve a sense of creative ownership and meaning in the modded games 

that they share and play with others (Postigo, 2008; Scacchi, 2002, 2004; Sotamaa, 

2010), and that game mods and modding practices become central elements in what 

constitutes play with and through games (Taylor, 2009). Finally, as already 

observed, OSS project portals like SourceForge host thousands of OSS game 

development projects that develop and deploy role-playing games (4,300 projects), 

simulation-based games (2,600), board games (2,300), side-scrolling/arcade games 

(2,000), turn-taking strategy games (1,700), multi-user dungeons or text-based 

adventure/virtual worlds (1,600), first-person shooters (1,600), MMORPG (600) and 

more. Thus, development of OSS games and related game development tools can 

be recognized as a central element in the cultural world of computer games and 
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game development as well as in the world of OSS development (Scacchi, 2002, 

2004, 2007). 

C. Four Types of Game Mods 

At least four types of game mods are realized through OSS development 

practices. These include (a) user interface customizations and agents, (b) game 

conversions, (c) machinima, and (d) hacking closed source game systems. Each 

type of game mod is examined in turn and each is facilitated (or prohibited) 

according to its copyright license. 

1. User Interface Customizations and Agents 

User interfaces to games embody the practice and experience of interfacing 

users (game players) to both the game system and the play experience designed by 

the game's developers. Game developers act to constrain and govern what users 

can do and what kinds of experiences they can realize. Some users in turn seek to 

achieve a form of competitive advantage during game play by modding the user 

interface software for their game when so enabled by game developers. These 

mods acquire or reveal additional information that users believe will help their play 

performance and experience. User interface add-ons subsequently act as the 

medium through which game development studios support game product 

customization, which is a strategy for increasing end-user satisfaction and thus the 

likelihood of product success (Burnett et al., 2004).  

Three kinds of user interface customizations can be observed. First and most 

common, is the player's ability to select, attire, or accessorize a player's in-game 

identity. Second, is for players to customize the color palette and representational 

framing borders of the their game display within the human-computer interface, 

much like what can also be done with Web browsers (e.g, Firefox 4 “personas” and 

“themes”) and other end-user software applications. Third, are user interface add-on 

modules that modify the player's in-game information management dashboard, but 

do not modify the underlying game play rules or functions. These add-ons provide 
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additional information about game play state that may enhance the game play 

experience as well as increase a player's sense of immersion or omniscience within 

the game world through perceptual expansion. This in turn enables awareness of 

game events not visible in the player's pre-existing in-game view. Furthermore, 

some add-on facilities (e.g., those available with the proprietary World of Warcraft 

MMORPG, scripted in the LUA language) accommodate the creation of automated 

agent scripts that can read/parse data streamed to the UI within an existing or other 

add-on dashboard component and then provide some additional value-added play 

experience, such as sending out messages or status reports to other players 

automatically. Such add-on agents modify or reconfigure the end-user play 

experience rather than the core functionality or play mechanics available to all of the 

game's other players. Consequently, the first two kinds of customizations result from 

meta-data selections within parametric system functions, whereas the third 

represents a traditional kind of user-created modular extension; one that does not 

affect the pre-existing game's functional requirements, nor one included in the 

operational source code base during subsequent system builds or releases, unless 

the extension does alter the software's requirements (e.g., by introducing a new 

security vulnerability or exploit that must be subsequently prevented). 

2. Game Conversions 

Game conversion mods are perhaps the most common form of game mods. 

Most such conversions are partial, in that they add or modify (a) in-game characters 

including user-controlled character appearance or capabilities, opponent bots, cheat 

bots, and non-player characters, (b) play objects like weapons, potions, spells, and 

other resources, (c) play levels, zones, maps, terrains, or landscapes, (d) game 

rules, or (e) play mechanics. Some more ambitious modders go as far as to 

accomplish (f) total conversions that create entirely new games from existing games 

of a kind not easily determined from the original game. For example, one of the most 

widely distributed and played total game conversions is the Counter-Strike (CS) mod 

of the Half-Life (HL) first-person action game from Valve Software. As the success of 
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the CS mod gave rise to millions of players preferring to play the mod over the 

original HL game, other modders began to access the CS mod to further convert in 

part or full, to the point that Valve Software modified its game development and 

distribution business model to embrace game modding as part of the game play 

experience that is available to players who acquire a licensed copy of the HL product 

family. Valve has since marketed a number of CS variants that have sold over 10 

million copies as of 2008; thus, denoting the most successful game conversion mod, 

as well as the most lucrative in terms of subsequent retail sales derived from a game 

mod. 

Another example is found in games converted to serve a purpose other than 

entertainment, such as the development and use of games for science, technology, 

and engineering applications. For instance, the FabLab game (Scacchi, 2010) is a 

conversion of the Unreal Tournament 2007 retail game from a first-person shooter to 

a simulator for training semiconductor manufacturing technicians in diagnosing and 

treating potentially hazardous materials spills in a cleanroom environment. This 

conversion was not readily anticipated by knowledge of the Unreal games or 

underlying game engine, although it maintains operational compatibility with the 

Unreal game itself. Therefore, game conversions can re-purpose the look, feel, and 

intent of a game across application domains, while maintaining a common software 

product line (Batory et al., 2002). 

Finally, it is common practice that the underlying game engine has one set of 

license terms and conditions to protect original work (e.g., no redistribution), while 

game mods can have a different set of terms and conditions as a derived work (e.g., 

redistribution allowed only for a game mod, but not for sale). In this regard, software 

licenses embody the business model that the game development studio or publisher 

seeks to embrace, rather than just a set of property rights and constraints. For 

example, in Aion, an MMORPG from the South Korean game studio NCSoft, no user 

created mods or user interface add-ons are allowed. Attempting to incorporate such 

changes would conflict with its end-user license agreement (EULA) and 
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subsequently put such user-modders at risk of losing their access to networked Aion 

multi-player game play. In contrast, the MMORPG World of Warcraft (WoW) allows 

for UI customization mods and add-ons only, but no other game conversions, no 

reverse engineering of the game engine, and no activity intended to bypass WoW's 

encryption mechanisms. Additionally, in one more variation, for games like Unreal 

Tournament, Half-Life, NeverWinterNights, Civilization, and many others, the EULAs 

encourage modding and the free redistribution of mods without fee to others who 

must have a licensed copy of the proprietary CSS game, but do not allow reverse 

engineering or redistribution of the CSS game engine required to run the OSS mods. 

This restriction in turn helps game companies realize the benefit of increased game 

sales by players who want to play with known mods rather than with the un-modded 

game as sold at retail. Thus, mods help improve games’ software sales, revenue, 

and profits for the game development studio, publisher, and retailer as well as 

enable new modes of game play, learning, and skill development for game modders. 

3.  Machinima 

Machinima can be viewed as the product of modding efforts that intend to 

modify the visual replay of game usage sessions.  Machinima employ computer 

games as their creative media, such that these new media are mobilized for some 

other purpose (e.g., creating online cinema or interactive art exhibitions). Machinima 

focuses attention to playing and replaying a game for the purpose of storytelling, 

movie making, or retelling of daunting or high efficiency game play/usage 

experiences (Lowood & Nitsche, 2011; Marino, 2004). Machinima is a form of 

modding the experience of playing a specific game by recording its visual play 

session history so as to achieve some other ends beyond the enjoyment (or 

frustration) of game play. These play-session histories can then be further modded 

via video editing or remixing with other media (e.g., adding music) to better enable 

cinematic storytelling or creative performance documentation. Machinima is a kind of 

play/usage history process re-enactment (cf. Scacchi, 1998), whose purpose may be 

documentary (replaying what the player saw or experienced during a play session) 
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or cinematic (creatively steering a play session so as to manifest observable play 

process enactments that can be edited and remixed off-line to visually tell a story). 

Thus, machinima mods are a kind of extension of the game software use experience 

that is not bound to the architecture of the underlying game software system, except 

for how the game facilitates a user's ability to structure and manipulate emergent 

game play to realize a desired play process enactment history. 

4. Hacking Closed Game Systems  

Hacking a closed game system is a practice whose purpose oftentimes 

seems to be in direct challenge to the authority of commercial game developers that 

represent large, global corporate interests. Hacking proprietary game software is 

often focused not so much on how to improve competitive advantage in multi-player 

game play, but instead is focused on expanding the range of experiences that users 

may encounter through use of alternative technologies (Huang, 2003; Scacchi, 

2004). For example, Huang's (2003) study instructs readers in the practice of 

“reverse engineering” as a hacking strategy to understand both how a game platform 

was designed and how it operates in fine detail. This in turn enables reconfiguration 

of new innovative modifications or original platform designs, such as installing and 

running a Linux operating system (instead of Microsoft's proprietary CSS offering). 

Although many game developers seek to protect their intellectual property (IP) from 

reverse engineering through end-user license agreements (EULAs), whose terms 

attempt to prohibit such action under threat of legal action, reverse engineering is 

not legally prohibited. Consequently, the practice of modding closed game 

consoles/systems is often less focused on enabling players to achieve competitive 

advantage when playing retail computer games, but instead may encourage those 

few so inclined for how to understand and ultimately create computing innovations 

through reverse engineering or other modifications.  

Closed game system modding is a style of software extension used by game 

modders who are willing to forego the “protections” and quality assurances that 

closed game system developers provide, in order to experience the liberty, skill, 
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knowledge acquisition, conceptual appropriation (“owned”), and potential to innovate 

that mastery of reverse engineering affords. Consequently, players/modders who 

are willing to take responsibility for their actions (and not seek to defraud game 

producers due to false product warranty claims or copyright infringement), can enjoy 

the freedom to learn how their gaming systems work in intimate detail and potentially 

learn about game system innovation through discovery and reinvention with the 

support of others who are like-minded (cf. Scacchi, 2004). Proprietary game 

development studios may sometimes allow for such mod-based infringement of their 

games. For example, the team of modders behind the hacking and conversion of the 

single-player CSS game, Grand Theft Auto, have produced an OSS (now GPL'd) 

game mod using code injection and hooking cheating methods to realize a 

networked multi-player variant called Multi Theft Auto, that Rockstar Games has 

chosen not to prosecute for potential EULA violation, but instead to embrace as GTA 

fan culture (Wen, 2011). Nonetheless, large corporate interests may assert that their 

IP rights allow them to install CSS root kits that collect potentially private information, 

or that prevent the reactivation of previously available OSS (e.g., the Linux Kernel on 

the Sony PS3 game console2) that game system hackers seek to undo. 

Finally, games are one of the most commonly modified types of proprietary 

CSS that are transformed into “pirated games” that are “illegally downloaded.” Such 

game modding practices are focused on engaging a kind of meta-game that involves 

hacking into and modding game IP from closed to (more) open. Thus game piracy 

has become recognized as a collective, decentralized, and placeless endeavor (i.e., 

not a physical organization) that relies on torrent servers as its underground 

distribution venue for pirated game software. As recent surveys of torrent-based 

downloads reveal, in 2008 the top 10 pirated games represented about 9 million 

downloads, whereas in 2009 the top 5 pirated games represented more than 13 

million downloads, and in 2010 the top 5 pirated games approached 20 million, all 

                                            

2  For details, see http://en.wikipedia.org/wiki/George_Hotz#Hacking_the_PlayStation_3  
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suggesting a substantial growth in interest in and access to such modded game 

products.3 Thus, we should not be surprised by the recent efforts of game system 

hackers that continue to demonstrate the vulnerabilities of different hardware and 

software-based techniques to encrypt and secure closed game systems from would 

be hackers. However, it is also very instructive to learn from these exploits how 

difficult it is to engineer truly secure software systems, whether or not such systems 

are games or some other type of application or package. 

D. Game Modding Software Tools and Support  

Games are most often modded with tools providing access to unencrypted 

representations of game software or game platforms. Such a representation is 

accessed and extended via a domain-specific (scripting) language. Although it might 

seem the case that game vendors would seek to discourage users from acquiring 

such tools, a widespread contrary pattern is observed. 

Game system developers are increasingly offering software tools for 

modifying the games they create or distribute as a way to increase game sales and 

market share. Game/domain-specific Software Development Kits (SDKs) provided to 

users by game development studios represent a contemporary business strategy for 

engaging users to help lead product innovation from outside the studio. Once Id 

Software, maker of the DOOM and Quake game software product line, and Epic 

Games, maker of the Unreal software game product line, started to provide 

prospective game players/modders with software tools that would allow them to edit 

game content, play mechanics, rules, or other functionality, other competing game 

development studios were pressured to make similar offerings or face a possible 

competitive disadvantage in the marketplace. However, the CSS versions of these 

                                            

3  For 2008, see http://torrentfreak.com/top-10-most-pirated-games-of-2008-081204/                                                      

    For 2009, see  http://torrentfreak.com/the-most-pirated-games-of-2009-091227/                            

   For 2010, see  http://torrentfreak.com/call-of-duty-black-ops-most-pirated-game-of-2010-101228/  
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tools do not provide access to the underlying source code that embodies the 

proprietary game engine—a large software program infrastructure that coordinates 

computer graphics, user interface controls, networking, game audio, access to 

middleware libraries for game physics, and so forth. However, the complexity and 

capabilities of such a tool suite mean that any one person, or better said, any game 

development or modding team, can now access modding tools or SDKs to build 

commercial quality CSS games through OSS extensions. However, mastering these 

tools appears to be an undertaking likely to be of interest only to highly committed 

game developers who are self-supported or self-organized.  

In contrast to game modding platforms provided by game development 

studios, there are also alternatives provided by the end-user community. One 

approach can be seen with facilities provided in meta-mods like Garry's Mod or the 

AMX Mod X mod-making package. Modders can use these packages to construct a 

variety of plug-ins that provide for the development of in-game contraptions as game 

UI agents or user created art works, or to otherwise create comic books, program 

game conversions, and other kinds of user created content. However, both 

packages require that you own a licensed CSS game like Counter-Strike: Source, 

Half-Life2 or Day of Defeat: Source from Valve Software.  

A different approach to end-user game development platforms can be found 

arising from OSS games and game engines. The DOOM and Quake games and 

game engines were released as free software subject to the GPL once they were 

seen by Id Software as having reached the end of their retail product cycle. 

Thousands of games/engines, as already observed, have been developed and 

released for download. Some started from the OSS that was previously the CSS 

platform of the original games. However, the content assets (e.g., in-game artwork) 

for many of these CSS- then-OSS games are not covered by the GPL, and so user-

developers must still acquire a licensed copy of the original CSS game if its content 



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - 71 - 
k^s^i=mlpqdo^ar^qb=p`elli=

 

is to be reused in some way.4 Nonetheless, some variants of the user-created GPL'd 

games now feature their own content that is limited/protected by Creative Commons 

licenses. 

E. Opportunities and Constraints for Modding 

Game modding demonstrates the practical value of software extension as a 

user-friendly approach to customizing software. Such software can extend games 

open to modding into diverse product lines that flourish through reliance on domain-

specific game scripting languages and integrated SDKs. Modding also demonstrates 

the success of end-users learning how to extend software to create custom user 

interface add-ons, system conversions, and replayable system usage videos as well 

as to discover security vulnerabilities. Therefore game modding represents a viable 

form of end-user engineering of complex software that may be transferable to other 

domains. 

Modding is a form of OSS-enabled collaboration. It is collaboration at a 

distance, where the collaborators, including the game developers and game users, 

are distant in space and time from each other yet they can interact in an open but 

implicitly coordinated manner through software extensions. Comparatively little 

explicit coordination arises, except when CSS game developers seek to embrace 

and encourage the creation of OSS game mods that rely on the proprietary CSS 

game engine (and also SDK) as a way to grow market share and mid share for the 

proprietary engine as a viable strategy for entry into the game industry. 

However, mods are vulnerable to evolutionary system version updates that 

can break the functionality or interface on which the mod depends. This can be 

viewed as the result of inadequate software system design practice, such that 

existing system modularization did not adequately account for software extensions 

that end-users seek, or else the original developer wanted to explicitly prohibit end-
                                            

4 For example, see http://assault.cubers.net/docs/license.html , accessed 13 April 2011. 
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users from making modifications that transform game play mechanics/rules or 

unintentionally allow for modification or misappropriation of copy-protected code or 

media assets. 

Last, one of the key constraints on game modding in particular, and software 

extension in general, are the rights and obligations that are expressed in the original 

software EULA. Mods tend to be licensed using OSS or freeware licenses that allow 

for access, study, modification, and redistribution rather than using free software 

licenses (e.g., GPLv2 or GPLv3). Software extensions that might be subject to a 

reciprocal GPL-style license require that the base/original software system 

incorporate an explicit software architectural design that requires the propagation of 

reciprocal rights across an open interface, except through an LGPL software shim 

(Alspaugh, Asuncion, & Scacchi, 2009). Otherwise, the scope of effectiveness and 

copyright protections of either free or non-free software (or related media assets) 

cannot be readily determined, and thus may be subject to copyright infringement or 

licenses non-compliance allegations. They may also be treated as social 

transgressions within a community of modders whose perceived ownership of the 

game mods demands the respect and honor of a virtual license that may or may not 

be legally valid (Alspaugh, Scacchi, & Asuncion, 2010). As the OSS community has 

long recognized, software rights and freedoms are expressed through IP licenses 

that ensure whether or not a person has the right to access, study, modify, and 

redistribute the modified software as long as the obligation to include a free software 

license is included that restates these rights in unalterable form, is included with the 

OSS code and its modified distributions.   

F. Conclusions 

Modding is emerging as a viable approach for mixing proprietary CSS 

systems with OSS extensions. The result is modded systems that provide the 

benefits of OSSD to developers of proprietary CSS systems and to end-users who 

want additional functionality of their own creation or from others they trust and seek 

to interact with through game play.  
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In contrast, modding is not so good for protecting software and media/content 

copyrights. Modding tests the limits of software/IP copyright practices. Some 

modders want to self-determine what copy/modding rights they have or not, and 

sometimes they act in ways that treat non-free software and related media as if it 

were free software.  Who owns what, and which copy rights or obligations apply to 

that which is modded, are core socio-technical issues when engaging in modding. 

This study helps to demonstrate that game modding is becoming a leading 

method for developing or customizing game software, whether based on proprietary 

CSS or OSS game systems. OSS-based software extensions are the leading ways 

and means for modding game-based user interfaces, for converting games from one 

style/genre to another, for recording game play sessions for cinematic production 

and replay, and for hacking closed source game systems. Finally, the development 

of computer game software and tools itself represents a large community of OSS 

projects that has had comparatively little study, and thus merits further attention as 

its own cultural world as well as one for OSS development. This last consideration 

may be important because other empirical studies of OSS development that rely on 

data from SourceForge will increasingly include OSS game projects within large 

project samples. Therefore, this study has begun to address why and how these 

conditions have emerged and how they are put into practice in different game 

modding efforts. Future study should also consider whether and how modding might 

be applied and adopted in other application domains where CSS can be extended 

through OSS mods. 
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Abstract 

This paper seeks to briefly examine what is known so far about game mods 

and modding practices. Game modding has become a leading method for 

developing games by customizing extensions to game software. The research 

method in this study is observational and qualitative, so as to highlight current 

practices and issues that can be associated with software engineering foundations. 

Numerous examples of different game mods and modding practices are identified 

throughout. 
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A. Introduction 

User modified computer games, hereafter game mods, are a leading form of 

user-led innovation in game design and game play experience. But modded games 

are not new, clean-sheet standalone systems, as they require the user to have an 

originally acquired or authorized copy of the unmodded game. 

Modding, the practice and process of developing game mods, is typically a 

“Do It Yourself” (DIY) approach to end-user game software engineering (Burnett, 

Cook, & Rothermel, 2004) that can establish both social and technical knowledge for 

how to innovate by wresting control over game design from their original developers. 

At least four types of game mods can be observed: user interface customization, 

game conversions, machinima, and hacking closed game systems.  Each enables 

different kinds of extension to the base game or game run-time environment. Game 

modding tools and support environments that support the creation of such 

extensions also merit attention. Subsequently, we conceive of game mods as 

covering customizations, tailorings, and remixes—that is, software extensions—of 

game embodiments, whether in the form of game content, software, or hardware 

denoting our space of interest.  

The most direct way to become a game modder is through self-tutoring and 

self-organizing practices. Modding is a form of learning—learning how to mod, 

learning to be a game developer, learning to become a game content/software 

developer, learning computer game science outside or inside an academic setting, 

and more (El-Nasr & Smith, n.d.). Modding is also a practice for learning how to 

work with others, especially on large, complex games/mods. Mod team efforts may 

also self organize around emergent software development project leaders or “want 

to be” (WTB) leaders, as seen for example in the Planeshift open source MMOG 

development/modding project (Scacchi, 2004). 

Game mods, modding practices, and modders are in many ways quite similar 

to their counterparts in the world of free/open source software development 
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(FOSSD). Modding is to games, like FOSSD is to software—they are increasingly 

becoming a part of mainstream technology development culture and practice. 

Modders are players of the games they construct, just like FOSS developers are 

also users of the systems they develop. There is no systematic distinction between 

developers and users in these communities, other than that there are users/players 

that may contribute little beyond their usage, word of mouth they share with others, 

and their demand for more such systems.  FOSSD portals like SourceForge.com, as 

of January 2011, indicate that the domain of “games” appears as the third most 

popular project category with over 23,000 active projects. These projects develop 

either FOSS-based games, game engines, or game tools/Software Development 

Kits (SDKs), and all of the top 50 projects each have logged more than 1 million 

downloads. Thus, the intersection of games and FOSS covers a substantial social 

and technological plane, as both modding and FOSS development are participatory, 

user-led modes of system development that rely on the continual replenishment of 

new participants joining and migrating through project efforts as well as new 

additions or modifications of content, functionality, and end-user experience 

(Scacchi, 2002, 2004, 2007). Modding and FOSSD projects are in many ways 

experiments to prototype alternative visions of what innovative systems might be in 

the near future, and so both are widely embraced and practiced primarily as a 

means for learning about new technologies, new system capabilities, new working 

relationships with potentially unfamiliar teammates from other cultures, and more (cf. 

Scacchi, 2007). 

Consequently, game modding can be recognized as a leading method for 

developing or customizing game software. And software extensions are the leading 

ways and means for game modding. 

This paper seeks to briefly examine what is known so far about game mods 

and modding practices. The research method in this study is observational and 

qualitative so as to highlight current practices and issues that can be associated with 

software engineering foundations. Numerous examples of different game mods and 
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modding practices are identified throughout to help distinguish empirically grounded 

observation from conjecture.  All of the types of game mods and modding practices 

identified in this paper have been employed first-hand by game development 

projects led or produced by the author. Such observation has subsequently served 

as a basis for further empirical study and technology development that ties together 

computer games and software engineering (Scacchi, 2002, 2004, 2007). 

B. Software Extension 

Game mods embody different techniques and mechanisms for software 

extension. However, the description of game mods and modding is often absent of 

its logical roots or connections back to software engineering.  As suggested, mods 

are extensions to existing game software systems, so it is appropriate to review what 

we already know about software extensions and extensibility. 

Parnas (1979) provides an early notion of software extension as an 

expression of modular software design. Accordingly, modular systems are those 

whose components can be added, removed, or updated while satisfying the core 

system functional requirements. Such concepts in turn were integrated into software 

architectural design language descriptions and configuration management tools 

(Narayanaswamy & Scacchi, 1987). However, reliance on software architecture 

descriptions is not readily found in either conventional game or mod development. 

Hentonnen, Matinlassi, Niemela, and Kanstren (2007) examine how software plug-

ins support architectural extension, while Leveque, Estublier, and Vega (2009) 

investigate how extension mechanisms like views and model-based systems support 

extension also at the architectural level. Last, the modern Web architecture is itself 

designed according to principles of extensibility through open interfaces, migration 

across software versions, network data content/hypertext transfer protocols, and 

representational state transfer (Fielding & Taylor, 2002). Mod-friendly networked 

multi-player games appear to take advantage of these capabilities. 



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - 81 - 
k^s^i=mlpqdo^ar^qb=p`elli=

 

Elsewhere, Batory, Johnson, MacDonald, and von Heeder (2002) describe 

how domain-specific (scripting) languages and software product lines provide 

support software extension, and it now seems clear that such techniques are 

commonly used in games that are open for modding. Finally, FOSSD has become 

another approach to extensible software engineering in practice (Scacchi, 2007). 

Therefore, software extensions and extensibility is a foundational concept in 

software engineering, and thus to no surprise, also foundational to the development 

of game mods. However, the logical connections and common/uncommon legacy 

remain under specified, which this paper seeks to address and update. 

C. Four Types of Game Mods 

1. User Interface Customizations 

User interfaces to games embody the practice and experience of interfacing 

users (game players) to the game system and play experience designed by game 

developers. Game developers act to constrain and govern what users can do, and 

what kinds of experiences they can realize. Some users in turn seek to achieve 

some competitive advantage during game play by modding the user interface 

software for their game, when so enabled by game developers, to acquire or reveal 

additional information that the users believe will help their play performance and 

experience. User interface add-ons subsequently act as the medium through which 

game development studios support game product customization as a strategy for 

increasing the likelihood of product success through end-user satisfaction (Burnett et 

al., 2004) 

Three kinds of user interface customizations can be observed. First and most 

common, is the player's ability to select, attire, or accessorize a player's in-game 

identity. Second, is for players to customize the color palette and representational 

framing borders of the their game display within the human-computer interface, 

much like what can also be done with Web browsers and other end-user software 

applications. Third, are user interface add-on modules that modify the player's in-
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game information management dashboard and that do not modify game play rules 

or functions. These add-ons provide additional information about game play or game 

state that may enhance the game play experience, as well as increase a player's 

sense of immersion or omniscience within the game world through sensory or 

perceptual expansion. This in turn enables awareness of game events not visible in 

the player's current in-game view. Consequently, the first two kinds of 

customizations result from meta-data selections within parametric system functions, 

whereas the third represents a traditional kind of modular extension that does not 

affect the pre-existing game's functional requirements. 

2. Game Conversions 

Game conversion mods are perhaps the most common form of game mods. 

Most such conversions are partial, in that they add or modify (a) in-game characters 

including user-controlled character appearance or capabilities, opponent bots, cheat 

bots, and non-player characters, (b) play objects like weapons, potions, spells, and 

other resources, (c) play levels, zones, maps, terrains, or landscapes, (d) game 

rules, or (e) play mechanics. Some more ambitious modders go as far as to 

accomplish (f) total conversions that create entirely new games from existing games 

of a kind that are not easily determined from the originating game. For example, one 

of the most widely distributed and played total game conversions is the Counter-

Strike (CS) mod of the Half-Life (HL) first-person action game from Valve Software. 

The success of the CS mod gave rise to millions of players preferring to play the 

mod over the original HL game, then other modders began to access the CS mod to 

further convert in part or full. Valve Software subsequently modified its game 

development and distribution business model to embrace game modding as part of 

the game play experience that is available to players who acquire a licensed copy of 

the HL product family. Valve has since marketed a number of CS variants that have 

sold over 10 million copies as of 2008, thus denoting the most successful game 

conversion mod, as well as the most lucrative in terms of subsequent retail sales 

derived from a game mod. 
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Another example is found in games converted to serve a purpose other than 

entertainment, such as the development and use of games for science, technology, 

and engineering applications. For instance, the FabLab game (Scacchi, 2010) is a 

conversion of the Unreal Tournament 2007 retail game from a first-person action 

shooter to a simulator for training semiconductor manufacturing technicians in 

diagnosing and treating potentially hazardous materials spills in a cleanroom 

environment. However, this conversion is not readily anticipated by knowledge of the 

Unreal games or underlying game engine, though it maintains operational 

compatibility with the Unreal game itself. Thus, game conversions can repurpose the 

look, feel, and intent of a game across application domains, while maintaining a 

common software product line (cf. Batory et al., 2002). 

Finally, it is common practice that the underlying game engine has one set of 

license terms and conditions to protect original work (e.g., no redistribution), 

whereas game mods can have a different set of terms and conditions from a derived 

work (e.g., redistribution allowed only for a game mod, but not for sale). In this 

regard, software licenses embody the business model that the game development 

studio or publisher seeks to embrace rather than just a set of property rights and 

constraints. For example, in Aion, an MMOG from the South Korean game studio 

NCSoft, no user created mods or user interface add-ons are allowed. Attempting to 

incorporate such changes would therefore conflict with its end-user license 

agreements (EULA) and subsequently put such user-modders at risk of losing their 

access to networked Aion multi-player game play. In contrast, the MMOG World of 

Warcraft (WoW) allows for UI customization mods and add-ons only, but no other 

game conversions, no reverse engineering game engine, and no activity intended to 

bypass WoW's encryption mechanisms. And, in one more variation, for games like 

Unreal Tournament, Half-Life, NeverWinterNights, Civilization and many others, the 

EULAs encourage modding and the free redistribution of mods without fee to others 

who must have a licensed game copy, but do not encourage reverse engineering or 

redistribution of the game engine required to run the mods. This restriction in turn 

helps game companies realize the benefit of increased game sales by players who 
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want to play with known mods, rather than with the unmodded game as sold at retail. 

Thus, mods help improve game software sales, revenue, and profits for the game 

development studio, publisher, and retailer. 

3. Machinima 

Machinima can be viewed as the product of modding efforts that intend to 

modify the visual replay of game usage sessions.  Machinima employ computer 

games as their creative media, such that these new media are mobilized for some 

other purpose (e.g., creating online cinema or interactive art exhibitions). Machinima 

focuses attention to playing and replaying a game for the purpose of story telling, 

movie making, or retelling of a daunting or high efficiency game play/usage 

experience (Marino, 2004). Machinima is a form of modding the experience of 

playing a specific game through a recording of its visual play session history so as to 

achieve some other ends beyond the enjoyment (or frustration) of game play. These 

play-session histories can then be further modded via video editing or remixing with 

other media (e.g., audio recordings) to better enable cinematic storytelling or 

creative performance documentation. Machinima is thus a kind of play/usage history 

process re-enactment (cf. Scacchi, 1998) whose purpose may be documentary 

(replaying what the player saw or experienced during a play session) or cinematic 

(creatively steering a play session so as to manifest observable play process 

enactments that can be edited and remixed off-line to visually tell a story). Thus, 

machinima mods are a kind of extension that is not bound to the architecture of the 

underlying game system, except for how the game facilitates a user's ability to 

structure and manipulate emergent game play to realize a desired play process 

enactment history. 

4. Hacking Closed Game Systems 

Hacking a closed game system is a practice whose purpose oftentimes 

seems to be in direct challenge to the authority of commercial game developers that 

represent large, global corporate interests. Hacking proprietary game software is 
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often focused not so much on how to improve competitive advantage in multi-player 

game play, but instead is focused on expanding the range of experiences that users 

may encounter through use of alternative technologies (Huang, 2003; Scacchi, 

2004). For example, Huang's (2003) study instructs readers in the practice of 

“reverse engineering” as a strategy to understand both how a game platform was 

designed and how it operates in fine detail, as a basis for developing new innovative 

modifications or original platform designs, such as installing and running a Linux 

open source operating system (instead of Microsoft's proprietary closed source 

offering). Although many game developers seek to protect their intellectual property 

(IP) from reverse engineering through EULA whose terms attempt to prohibit such 

action under threat of legal action, reverse engineering is not legally prohibited nor 

discouraged by the courts. Consequently, the practice of modding closed game 

systems is often less focused on enabling players to achieve competitive advantage 

when playing retail computer games, but instead may encourage those few so 

inclined for how to understand and ultimately create computing innovations through 

reverse engineering or other DIY game system  modifications. Thus, closed game 

system modding is a style of software extension  by game modders who are willing 

to forego the “protections” and quality assurances that closed game system 

developers provide, in order to experience the liberty, skill, and knowledge 

acquisition, as well as the potential to innovate, that mastery of reverse engineering 

affords. Consequently, players/modders who are willing to take responsibility for 

their actions (and not seek to defraud game developers or publishers due to false 

product failure warranty claims or copyright infringement) can enjoy the freedom to 

learn how their gaming systems work in intimate detail and potentially learn about 

game system innovation through discovery and reinvention with the support of 

others who are like-minded (cf. Scacchi, 2007). 

Finally, games are one of the most commonly modified types of software that 

are transformed into “pirated games” that are “illegally downloaded.” Such game 

modding practice is focused on engaging a kind of meta-game that involves 

modding game IP from closed to (more) open. Thus, game piracy has become 
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recognized as a collective, decentralized, and placeless endeavor (i.e., not a 

physical organization) that relies on torrent servers as its underground distribution 

venue for pirated game software.  As recent surveys of torrent-based downloads 

reveal, in 2008 the top 10 pirated games represented about 9 million downloads, 

while in 2009 the top 5 pirated games represented more than 13 million downloads, 

and in 2010 the top 5 pirated games approached 20 million, all suggesting a 

substantial growth in interest in and access to such modded game products. Thus, 

we should not be surprised by the recent efforts by game system hackers that 

continue to demonstrate the vulnerabilities of different hardware and software-based 

techniques to encrypt and secure closed game systems from would be hackers. 

However, it is also very instructive to learn from these exploits how difficult it is to 

engineer truly secure software systems, whether such systems are games or some 

other type of application or package. 

D. Game Modding Software tools and Support 

Games are most often modded with tools that provide access to an 

unencrypted representation of the game software or game platform. Such a 

representation is accessed and extended via a domain-specific (scripting) language. 

Although it might seem the case that game vendors would seek to discourage users 

from acquiring such tools, we observe a widespread contrary pattern.  

Game system developers are increasingly offering software tools for 

modifying the games they create or distribute as a way to increase game sales and 

market share. Game/domain-specific Software Development Kits (SDKs) provided to 

users by game development studios represent a contemporary business strategy for 

engaging users to help lead product innovation from outside the studio. Once Id 

Software, maker of the DOOM and Quake game software product line, and also Epic 

Games, maker of the Unreal software game product line, started to provide 

prospective game players/modders with software tools that would allow them to edit 

game content, play mechanics, rules, or other functionality, other competing game 

development studios were pressured to make similar offerings or face a possible 
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competitive disadvantage in the marketplace. However, these tools do not provide 

access to the underlying source code that embodies the proprietary game engine—a 

large software program infrastructure that coordinates computer graphics, user 

interface controls, networking, game audio, access to middleware libraries for game 

physics, and so forth. However, the complexity and capabilities of such a tool suite 

mean that any one, or better said, any game development or modding team, can 

now access modding tools or SDKs to build commercial-quality games. However, 

mastering these tools appears to be a significant undertaking likely to be of interest 

only to highly committed, would-be game developers who are self-supported or self-

organized.  

 

In contrast to game modding platforms provided by game development 

studios, there are also alternatives provided by the end-user community. One 

approach can be seen with facilities provided in Garry's Mod mod-making package 

that you can use to construct a variety of fanciful contraptions as user created art 

works, or to create comic books, program game conversions, and produce other 

kinds of user created content. However, this package requires that you own a 

licensed game like Counter-Strike: Source, Half-Life2 or Day of Defeat: Source from 

Valve Software.  

A different approach to end-user game development platforms can be found 

arising from free/open source software games and game engines. The DOOM and 

Quake games and game engines were released as free software subject to the GPL 

once they were seen by Id Software as having reached the end of their retail product 

cycle. Hundreds of games/engines have been developed and released for download 

starting from the free/open source software that was the platform of the original 

games. However, the content assets for many of these games (e.g., in-game 

artwork) are not covered by the GPL, and so user-developers must still acquire a 

licensed copy of the original game if its content is to be reused in some way. 
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Nonetheless, some variants of the user-created GPL'd games now feature their own 

content that is limited/protected by Creative Commons licenses. 

E. Opportunities for Modding and Software Engineering 

Game modding demonstrates the practical value of software extension as a 

user-friendly approach to custom software. Such software can extend games open 

to modding into diverse product lines that flourish through reliance on domain-

specific game scripting languages and integrated software development kits. 

Modding also demonstrates the success of end-users learning how to extend 

software to create custom user interface add-ons, system conversions, replayable 

system usage documentaries and movies, as well as to discover security 

vulnerabilities. Therefore, game modding represents a viable form of end-user 

engineering of complex software that may be transferable to other domains. 
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A. Overview 

Overall, our efforts developed in this research project and described in this 

report sought to articulate the acquisition research problem with respect to the 

issues identified above in order to determine what types or kinds of answers can be 

realized through this investigation. Subsequently, our efforts focused on the 

following four activities: 

 Investigating the interactions between software system acquisition 
guidelines, software system requirements, requirements for OSS, and 
consequences of alternative software system architectures that 
incorporate different mixes of OSS components, SPLs with open APIs 
and open standards (Scacchi & Alspaugh, 2008; Alspaugh, Asuncion, 
& Scacchi, 2009a, 2009b, 2009c; Scacchi, Alspaugh, & Asuncion, 
2010). This entails exploring the balance between development, 
verification, and validation of property and security rights, as well as 
contractual obligations within continuously improving OSS system 
elements while managing the evolution of OA systems at design-time, 
build-time, and release and run-time. 

 Developing and refining the formal foundations for establishing 
acquisition guidelines for use by program managers seeking to provide 
software-intensive systems in cost reducing ways that rely on 
development and deployment of secure OA systems using OSS and 
SPL technology and processes (Alspaugh et al., 2009c). 

 Developing concepts for the design of a comprehensive automated 
system that can support acquisition of OA systems so as to determine 
their conformance to acquisition guidelines/policies, contracts, and 
related license management issues (Alspaugh et al., 2009a; Asuncion, 
2009). 
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 Documenting and presenting final results (Scacchi & Alspaugh, 2011) 
at the 8th Annual Acquisition Research Conference, in Monterey, CA, 
May 2011, as well as at related research venues and publications 
where we can elicit the strongest critical feedback on our research 
efforts and results. 

B. Inter-Project Research Coordination 

We continue to believe that we are extremely well positioned to continue to 

leverage our recent research work and results (Scacchi & Alspaugh, 2008; Alspaugh 

et al., 2009a, 2009b, 2009c; Scacchi et al., 2010) with the effort described here. We 

continued to build on our recent research efforts in OSS (Scacchi, 2007, 2011a, 

2011b) and software requirements-architecture interactions (Asuncion, 2009; 

Scacchi, 2009; Scacchi & Alspaugh, 2008), as well as our track record in prior 

acquisition research studies. Similarly, we find current related research supported by 

the Department of Defense (DoD) addressing related issues in OSS (Hissam, 

Weinstock, & Bass, 2010) also influences our proposed effort. In addition, our effort 

builds from and contributes to research on software system acquisition within the 

DoD, whether focusing on SPLs (Bergey & Jones, 2010; Guertin & Clements, 2010), 

or on how to improve software system acquisition through workforce upgrades and 

government-industry teaming (Heil, 2010). Thus, we believe that our complementary 

research places us at an extraordinary advantage to conduct the proposed study 

that addresses a major strategic acquisition goal of the DoD and the three military 

Services (Starrett, 2007; Weathersby, 2007; Wheeler 2007). 

C. Prospects for Longer Term Acquisition-Related Research 

Each of the military Services has committed to orienting their major system 

acquisition programs around the adoption of an OA strategy that in turn embraces 

and encourages the adoption, development, use, and evolution of OSS. Thus, it 

would seem there is a significant need for sustained research that investigates the 

interplay and inter-relationships between (a) current/emerging guidelines for the 

acquisition of software-intensive systems within the DoD community (including 

contract management and software development issues) and (b) how software 
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systems that employ an OA incorporating OSS products and production processes 

are essential to improving the effectiveness of future, software-intensive program 

acquisition efforts. Consequently, we have focused our research project, and the 

results appearing in this final report, to continue to lay new foundations for long-term 

acquisition-related research in support of the Acquisition Research Program based 

at the Naval Postgraduate School. 
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